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A B S T R A C T

Humanitarian assistance operates under conditions characterized by the collapse of health facilities, the dis-
ruption of health systems and the breakdown of already on-going treatments in case of emergency. In addition to
these circumstances, aid agencies in developing countries are often confronted with poor or non-existent in-
frastructure that is further disrupted in case of disasters, i.e., destroyed roads and debris-covered areas which
hinder medical teams in reaching remote locations. As the supply via trucks and helicopters is not applicable in
this situation, alternative means of transport have to be considered. Unmanned aerial vehicles (UAVs) are re-
ceiving increased attention by humanitarian organizations as they can help overcoming last-mile distribution
problems, i.e., inaccessibility to cut-off regions. This paper considers drone applications in last-mile distribution
in humanitarian logistics and presents an optimization model for the delivery of multiple packages of light-
weight relief items (e.g. vaccine, water purification tablets, etc.) via drones to a certain number of remote
locations within a disaster prone area. The objective of the model is to minimize the total travelling distance (or
time/cost) of the drone under payload and energy constraints while recharging stations are installed to allow the
extension of the operating distance of the drone. The implementation of different priority policies is discussed.
The model is solved as a mixed integer linear program and illustrated numerically with different scenarios.

1. Introduction

In recent years a rising number of natural and man-made disasters
have hit several regions all over the world, causing thousands of victims
and long-term damage to disaster-prone locations [5]. In order to
maintain live-saving operations and to cover basic needs of the suf-
fering population it is essential to plan, implement and control an ef-
ficient flow of relief goods and information into the affected areas [20].
Humanitarian logistics, as the technical term for this process, includes
the procurement, transport and warehousing of relief goods from the
point of origin to the beneficiaries’ location.

A number of observed disasters in recent years such as the Haitian
earthquake 2011, the tsunami in the Indian Ocean 2004, flooding in
India in 2013 or the Horn of Africa crisis 2011, indicate that mostly
developing countries are vulnerable to natural disasters [7]. There are
hundreds of more crisis that do not attract as much attention but have
equally devastating impact. Urbanization, global population growth
and land-shortage in developing countries increase the amount of
people living in disaster-prone areas leading to even higher numbers of
victims when disasters strike [9].

The impediments of humanitarian assistance in developing coun-
tries are intensified by the collapse of health facilities, the disruption of
health systems and the breakdown of already on-going treatments in

case of emergency. Contaminated water and poor sanitation conditions
combined with low vaccination coverage often leads to water-, air- and
vector borne diseases, such as diarrheal diseases, acute respiratory in-
fections, malaria, leptospirosis, measles, dengue fever, viral hepatitis,
typhoid fever, meningitis, as well as tetanus and cutaneous mucormy-
cosis [22]. In such situations, quick response and rapid distribution of
vital relief items, such as ready-to-use therapeutic food (RTUF)
packages, water purification tablets, medical kits and vaccine into the
affected regions could save lives and prevent or slow the spread of
epidemics.

Massive problems and challenges of relief items distribution in de-
veloping countries are also associated to means of transport and
transportation infrastructure. NGOs' vehicle resources in developing
countries are quite limited and costly due to rising fuel consumption,
maintenance and insurance. Development and emergency missions are
generally conducted by aged truck fleets because of delayed vehicle
replacement beyond the recommended time frame. An obsolete and
poor conditioned vehicle fleet restricts loading capacities, thus leading
to transport of light-weight items only. Land based motorized transport
by humanitarian organizations is often limited to Sport utility vehicles
(SUVs) and small trucks, because larger means of transport are not
applicable under such conditions [1]. The major problem resulting from
poor means of transport is the insufficient supply to rural areas because
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mid- and long distances cannot be overcome and product markets are
not reachable for humanitarian organizations [18]. In addition to these
conditions, aid agencies are often confronted with poor or inexistant
infrastructure. Road surface quality in developing countries is further
characterized by low percentages of paved roads and narrow road
widths. Geographical characteristics, e.g. geographically dispersed is-
lands or adverse terrain, represent additional impediments to the al-
ready challenging situation [17]. In the event of a disaster, the already
poor conditions are further disrupted, as roads are flooded or blocked,
small bridges are collapsed and land sections are covered with debris
[15]. Under these conditions roads are impassable and many locations
are completely unreachable by land based transportation means. Sub-
sequently, last-mile distribution of relief items proves to be extremely
difficult by means of traditional transport systems. Air cargo via heli-
copters is often also not applicable due to the lack of trained pilots as
well as helicopters and land-based personnel in the disaster region.
Bringing such human and material resources from outside to disaster
locations is costly and often takes too much time when time pressure to
provide aid is extremely high. Consequently, the call for developing
alternative means of transport and the integration of innovative tech-
nologies in last-mile distribution is given. Practitioners as well as sci-
entific communities state that there has to be more governmental
support to design, develop and analyze methods, systems and innova-
tions for potential applications in disaster response. Advanced tech-
nologies that are already in use within the commercial context have to
be tested for their applicability in humanitarian logistics [26]. In this
regard, unmanned aerial vehicles (UAVs), commonly referred to as
drones, can provide solutions to the problems associated to current last-
mile ground transportation. They seem to offer the potentials to save
time and costs compared to traditional means of transport and make
relief items supply to cut-off regions possible in the first place [31].

Drones are autonomous or teleoperated flying machines that do not
require constant user control [12]. Drone applications have mainly
been considered in the commercial supply chain context, focusing on
the applications in cargo delivery, mapping, target covering and sur-
veillance (see,e.g. [11,8,28,30,25]). In this respect, optimization
models consider drones in combination with other means of transport.
Numerous large companies, such as Amazon, DHL or Google [11,25]
already show interest in drone applications for parcel delivery in urban
areas.

Currently available cargo drones include fixed-wing, rotor and hy-
brid models, each of them with different specifications, capacities and
drop-off systems. State of the art drones can deliver products with a
maximum payload between 0.5 kg and 2.5 kg [14]. Conventional
drones use batteries to operate their engines and need to be recharged
after they run out of power. Recharging stations can be installed within
existing infrastructure in advance to a disaster or can immediately be
deployed in the response phase using mobile base stations, e.g. trucks or
SUVs. This strategy has been tested by the Austrian Red Cross in co-
operation with Land Rover in a project called “Hero”. Here, a Land
Rover Discovery is used as a commando vehicle for drones, where take-
off, landing and recharging during an ongoing operation is possible.
Energy–aware drone routing problems are considered in [8,11,28]
where the energy consumption of the drone is assumed to depend on
one or more of the flight related parameters; payload, speed, distance
and altitude. A drone routing model that integrates recharge stations in
the context of surveillance is presented in [30].

Recently, the humanitarian community also became aware of the
benefits of drone usage, as they can support emergency operations
along the entire disaster management cycle, i.e. mitigation, prepared-
ness, response and recovery stages [21]. Drones in humanitarian lo-
gistics can assist in emergency response mapping, damage assessment,
cargo delivery and search and rescue (SAR) missions during the pre-
paredness and immediate response phases [6]. Fire detection, imagery
collection, monitoring and path planning also are among the most
common drone applications to date (see, e.g. [16,23,10,3,8]). In the

context of last-mile distribution, they offer great potentials to overcome
the problem of inaccessibility to remote locations for providing basic
emergency items to beneficiaries. In these situations drones offer the
advantages to traverse heavy terrain, blocked streets, destroyed bridges

Table 1
Overview about scenario settings.

Scenario M (in packages) E (in kJ)

1 8 200
2 4 200
3 8 100
4 8 60

Fig. 1. Scenario 1.

Fig. 2. Scenario 2.
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and flooded infrastructure in disaster scenarios. The advantages of
drone supply of life-saving commodities such as blood products, vac-
cine or pharmaceutical products, to critical access hospitals [27,13]
have been tested in multiple field projects. A number of humanitarian
organizations are currently testing the potential of drones to deliver
essential humanitarian supplies to persons in difficult-to-access areas
[2]. In Papua New Guinea, tuberculosis infected people that were cut
off the outside world due to heavy rainfalls were supplied with medical
treatment by means of UAVs [19].

Few papers have been published focusing on drone delivery in
emergency situations, mainly concentrating on the combination of
drones and alternative means of transport. Such models are proposed by
Mosterman et al. [24], Scott and Scott [29] and Chowdhury et al. [4]
where most of the proposed models are formulated as mixed integer

linear programs (MILP) with the objective to minimize the overall
mission time, cost, distance or the number of used UAVs. The potentials
of UAVs in supplying remote locations in developing countries and their
positive impact on relief chain performance remain therefore, relatively
unexplored. In order to shed more light on this emerging topic, this
paper aims at developing a mathematical model for the optimization of
drone delivery in last-mile distribution of emergency items considering
technical specifications of drones and disaster specific circumstances. In
particular, the proposed model considers the drone energy consumption
as a function of payload and flight mode and takes disaster specific
circumstances into consideration. The model considers the possibility
for drones to stop at recharging stations in mission for recharging the
battery which makes travelling back to the base station for the re-
charging unnecessary and extends the operation distance of the drone.
Considering these details in the optimization model enables us to
generate realistic solutions, thus bringing value to existing literature on
drone delivery in humanitarian logistics.

The rest of the paper is organized as follows. First, we introduce
notations along with the assumptions and build our optimization model
for drone delivery. Then, we present numerical examples to illustrate
the use of the model and show the effect of payload and energy con-
straints on the optimal solution of the problem. A short discussion and
outlook to future research conclude the paper.

2. Methodology and model formulation

Deriving from the previous discussed last–mile distribution chal-
lenges in developing countries, we consider the problem of supplying
multiple packages of light–weight relief items to remote locations using
a single or a fleet of drones (UAVs) with identical characteristics. The
drones depart form a unique base station (depot) with a fully charged
battery and may stop for recharging at additional available recharge
stations if necessary. The relief packages are only available at the depot.
Each drone can carry a maximum number M of relief packages while E
is the maximum amount of energy supplied by a fully charged battery.

We now define the remaining sets, variables and constants and build
our mathematical model.

2.1. Sets

In our model we distinguish three different sets of geographical
locations. The first one is D which represents the depot. As we assume
that drones are initially located at a single base station, D is a singleton
set. Demand locations are included in set P which is further partitioned
into priority subsets according to a given number of priority levels (say,
3 levels). Therefore, P1 represents the set of the highest priority demand
locations, P2 the set of middle priority and P3 the set of the lowest
priority locations. Finally, recharge stations are represented in set R. Let

= ∪ ∪V D P R be the set of all locations in the system.
We can construct a graph where the nodes are the elements of V and

the arcs represent the possible moves. When it is possible for a drone to
move from any location to any other location, the graph is complete.

2.2. Variables

For setting up the objective function and model constraints we are
in need of defining three different variables. The first variable xij is used
to describe the number of times the drone moves from location i to
location j. The level of energy in the battery when the drone is about to
leave location i to j is represented by eij. We use wij to denote the
number of packages carried by the drone when it leaves location i to j.

2.3. Constants

We assume that demand is only present at locations P and not at the
depot D and recharging stations R. Let di be the demand at location i,

Fig. 3. Scenario 3.

Fig. 4. Scenario 4.
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∈ ∪ ∪i P P P1 2 3. We assume that demand at each location ∈i P does not
exceed the maximum payload of a drone ( ≤d Mi , ∀ ∈i P). The energy
function (Eq. (1)) describes the amount of energy used by the drone to
move from location i to j with payload wij. We denote this amount by
R w( )ij and calculate it as follows:

= + + +R w γ γw δ ρ ρw( ) ( ),ij ij ij ij0 0 (1)

where,

γ0 Energy needed for takeoff and landing for an empty drone.
γ Additional energy amount needed for takeoff and landing

with an additional package.
ρ0 Energy to fly one distance unit for an empty drone.
ρ Additional energy amount needed to fly one distance unit

with one package.
δij Distance between locations i and j, ∈i j V, .

2.4. Objective

The objective of the model is to minimize a cost function f which
may represent the total travelling distance, total travelling time or total
travelling costs (financial) of the drone(s):

min f x w e( , , ).α (2)

where α is a vector of coefficients of the cost function elements. To
simplify, we assume that f is a linear function with respect to the
variables x, w and e. An objective function is given in the linear form:

∑
∈

min α x ,
i j V

ij ij
, (3)

where αij, ∈ij V are coefficients that express the cost (e.g. financial,
time, distance, energy) of drone moving between each couple of loca-
tions. For instance, to minimize the total distance traveled by the drone
we would take the following:

=α δ .ij ij (4)

2.5. Constraints

2.5.1. Degree constraints
We assume that each demand location in P is visited exactly once by

only one drone (Eq. (5)).

∑ = ∈
∈

x j P1, .
i V j

ij
/{ } (5)

A drone can visit recharging stations and depots as many times as
necessary, i.e. when the drone battery is empty or for loading of relief
items. However, in–degree must be equal to out–degree for all nodes
(Eq. (6)).

∑ ∑= ∈
∈ ∈

x x j V, .
i V j

ij
i V j

ji
/{ } /{ } (6)

At least one drone is used for supplying relief packages to locations
in P. Therefore the number of drone moves xij between the depot D and
demand locations P or recharging stations R has to be greater than 0.
We put,

∑ > ∈
∈

x i D0, .
j V D

ij
/ (7)

2.5.2. Demand constraints
For energy saving purposes, the drone does not need to carry the

maximum payload at each route. We impose that the drone returns
empty to the depot (Eq. (8)) and calculate backwards the required
number of items for each location. If the drone moves from i to j, then
the difference between the payload (at arrival then departure) is equal

to the demand at location i (Eq. (9)) except for recharge stations (Eq.
(10)). Obviously, the payload on any route cannot exceed the maximum
payload of the drone (Eq. (11)).

∑ = ∈w i D0, ,
j

ji
(8)

∑ ∑− = ∈w w d i P, ,
j

ji
j

ij i
(9)

∑ ∑− = ∈w w i R0, ,
j

ji
j

ij
(10)

≤ ∈w Mx i j V, , .ij ij (11)

2.5.3. Energy constraints
We assume that the drone battery is always fully charged when the

drone leaves the depot or a recharging station to another location (Eq.
(12)). Obviously, the level of energy in the battery is always lower or
equal to the maximum energy level E (Eq. (13)). Eq. (14) gives the
energy balance, i.e., amount of energy consumed to move from any
location to location i in P. The energy level in the battery when the
drone is about to leave location i must be sufficient to reach its next
destination (Eq. (15)).

= ∈ ∪ ∈e Ex i D R j V i, , /{ },ij ij (12)

≤ ∈ ∈e Ex i P j V i, , /{ },ij ij (13)

∑ ∑

∑

−

= + + + ∈

∈ ∈

∈

e e

γ x γw δ ρ x ρw i P( ( )), ,
j V i

ji
j V i

ij

j V i
ji ji ji ji ji

/{ } /{ }

/{ }
0 0

(14)

≥ + + + ∈ ∈e γ x γw δ ρ x ρw i V j V i( ), , /{ }.ij ij ij ij ij ij0 0 (15)

2.5.4. Priority constraints
Priority in the context of humanitarian logistics plays an important

role, as emergency locations in the field can be differently impacted by
a disaster. In this regard, it is important to prioritize certain locations
and to provide aid to the people that are in highest need first. For in-
stance, in the case of the outbreak of a waterborne epidemics, fast and
targeted intervention is required in order to save lives and limit or slow
the spread of the disease. Hence, outbreak locations are served with the
highest priority level while any other areas connected via watercourse
to the infected locations must receive high attention (priority level 2).
The remaining locations are considered at priority level 3. Obviously, it
is possible to define more or less than 3 priority levels.

There are different approaches to define priority classes and to set
priority rules in the optimization model depending on the real situation.
We distinguish the following priority rules:

2.5.4.1. Relative priority. Lower priority locations can be served in the
same route with higher priority locations if this is optimal. A simple
procedure to execute the solution of the above optimization problem
according to this priority rule is as follows:

(1) All routes containing nodes with high priority (P1) are executed
first.

(2) Routes containing nodes with medium priority (P2) are executed
next.

(3) The remaining routes containing only low priority locations (P3) are
executed last.

In this way, routes containing the highest priority locations may also
contain nodes with lower priorities but the value of objective function is
not changed. It is also possible to implement relative priority rules
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using time windows by imposing narrow time windows for the highest
priority nodes and wider or no time windows for the lowest priority
locations.

2.5.4.2. Absolute priority. Following the absolute priority rule,
locations with higher priority must be served before any other
locations. A strict implementation of this rule is achieved by
decomposing the problem according to the number of priority classes,
i.e., we solve the problem with only nodes of the same priority level in P
each time. Therefore, we attach an extra index ∈k {1, 2, 3} to the
variables x, w and e representing the priority level and add the
constraint:

∑ = ∈ ∈
∈

x i P P k0, / , {1, 2, 3}.
j V i

ijk k
/{ } (16)

The drone has to return to the depot after serving all locations with high
priority even if extra capacity is left.

3. Numerical examples

In this section, we provide numerical examples to illustrate the use
of our optimization model. They are solved on a personal computer
with a 3.3 GHz CPU and a 4.00 GB memory space. The optimization
engine used to solve the MILP is GAMS (General Algebraic Modeling
System). In all of the examples, there is 1 depot, 1 recharging station
and 5 demand locations. Demand at these locations is characterized as
follows: at location 1 the demand is 1 package, at location 2 the demand
is also 1 package, at location 3 the demand is 2 packages, at location 4
the demand is 1 package and at location 5 the demand is 2 packages.
Initially, the drone is located at the depot as a starting point for the
delivery process. In total, we computed 4 different scenarios, with
varying payload capacity M and maximum energy level E of the drone
(Table 1). For transporting relief packages we assume a conventional
rotor-drone. The objective in all 4 scenarios is to minimize the total
distance traveled by the drone. Thus we can set the objective function
to:

∑
∈

min δ x .
i j V

ij ij
, (17)

Since the model is convex, we can guarantee global optima. In the
following we discuss the result of each scenario in order to generate
more insights into the optimization model.

In Scenario 1, the optimal solution (Fig. 1) consists of only one
route. Indeed, the maximum payload of the drone is greater than the
total demand of all the locations and the energy supplied by the battery
is enough for the drone to carry out the mission without needing to
recharge.

In Scenario 2, we assume that the maximum payload of the drone is
=M 4. Consequently, two routes are necessary to supply all the loca-

tions (Fig. 2). Recharging the battery remains unnecessary.
In scenario 3, we use a drone with a maximum payload of 8

packages but a restricted battery level. According to the optimal solu-
tion, the drone departs from the depot with sufficient payload to serve
all the demand locations (Fig. 3). The operating distance of the drone is
extended by the recharging station. The drone stops to recharge the
battery and continues the mission to serve remote locations.

Finally, we assume in Scenario 4 that the used drone has a max-
imum payload of 8 packages and an even lower battery capacity
(Fig. 4). The drone needs to recharge its battery three time (once at the
depot, and twice at the recharge station). As shown in this example, it is
sometimes optimal to return to the depot for recharging.

The above examples show how the energy consumption function of
the drone can affect the optimal solution of the proposed routing pro-
blem. Additionally, the implementation of the recharge stations can
influence the feasibility of the problem, i.e., some locations may be very
far apart that it is not possible to serve them directly from the depot.

4. Concluding remarks

Relief items distribution to remote locations in disaster affected
areas poses several challenges for humanitarian organizations, espe-
cially in developing countries, where the infrastructure is non-existant
or, at best, poor in normal situations and is disrupted when disasters
strike. Drone technology for emergency items delivery solves the pro-
blem of inaccessibility to cut-off regions where land-based transporta-
tion and air cargo is not applicable anymore. However, the current
drone technology has several limitations such as limited payload and
operations range due to energy constraints.

This paper explores the application of drones for last-mile dis-
tribution of relief packages in the immediate response to disasters. We
proposed a mathematical model to optimize the delivery process under
realistic constraints. It takes into consideration the limitations of the
drone in terms of energy and payload and incorporates specific features
such as the implementation of recharge stations in order to extend the
operations range. The definition of priority classes and the incorpora-
tion of priority rules in the model have been discussed. The proposed
model can be extended in many directions to take into account the real
life constraints and the characteristics of the drones based on the
available technology. In particular, hybrid systems that combine var-
ious transportation means such as trucks, SUVs and drones are of in-
terest.
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