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A B S T R A C T

Unmanned Aerial Vehicles, commonly known as drones, have attained considerable interest in
recent years due to the potential of revolutionizing transport and logistics. Amazon were among
the first to introduce the idea of using drones to deliver goods, followed by several other dis-
tribution companies working on similar services.

The Traveling Salesman Problem, frequently used for planning last-mile delivery operations, can
easily be modified to incorporate drones, resulting in a routing problem involving both the truck
and aircraft. Introduced by Murray and Chu (2015), the Flying Sidekick Traveling Salesman Problem
considers a drone and truck collaborating. The drone can be launched and recovered at certain
visits on the truck route, making it possible for both vehicles to deliver goods to customers in
parallel. This generalization considerably decreases the operational cost of the routes, by redu-
cing the total fuel consumption for the truck, as customers on the routes can be serviced by
drones without covering additional miles for the trucks, and hence increase productivity.

In this paper a mathematical model is formulated, defining a problem similar to the Flying
Sidekick Traveling Salesman Problem, but for the capacitated multiple-truck case with time limit
constraints and minimizing cost as objective function. The corresponding problem is denoted the
Vehicle Routing Problem with Drones. Due to the difficulty of solving large instances to optimality,
an Adaptive Large Neighborhood Search metaheuristic is proposed. Finally, extensive compu-
tational experiments are carried out. The tests investigate, among other things, how beneficial
the inclusion of the drone-delivery option is compared to delivering all items using exclusively
trucks. Moreover, a detailed sensitivity analysis is performed on several drone-parameters of
interest.

1. Introduction

Unmanned Aerial Vehicles (UAVs), better known as drones, have attained considerable attention during the last decade due to
their huge potential in logistics, inspection and monitoring. As the name indicates, UAVs are vehicles that are able to stay in the air
and travel along specified routes in an automated way. Among the many applications, the transport of parcels, food or other goods
stands out, and pilot projects are being studied by several companies (French, 2015).

The delivery of goods using drones reached a new level, when Jeff Bezos, Amazon’s CEO, announced that the company was
developing the idea of using UAVs for the delivery of small commodities (Rose, 2013). Amazon company intends to launch its
program for the delivery of goods from warehouses to customers, or simply moving goods between warehouses, using its “Prime Air”
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drone from 2017 (Wang, 2016). Later, DHL stated it was already developing a similar project for the delivery of medicals and other
goods considered as urgent on a small island in northern Germany, obtaining promising results (Hern, 2015). In addition, a similar
project is being developed by Google X, using the drone “Project Wing” with similar properties as a plane. Moving vertically and
horizontally, it drops the merchandise from the air, when it arrives to the location, with the help of a wire to guarantee a safe landing
(Muoio, 2016). Many more companies have begun joining parcel-deliveries with drones, highlighting UPS, FedEx or Domino’s Pizza
(Sacramento, 2017). An example of a delivery drone is shown in Fig. 1.

The use of drones can lead to controversial issues, causing accidents or being used improperly for surveillance. The American
organization Federal Aviation Administration (FAA) has laid down regulations that limit the use of drones for commercial activities
when operating in the airspace. The new rules that were presented by the FAA on the use of UAVs for commercial activities will
greatly favor the companies, but will continue representing a considerable amount of constraints (McDougal, 2016). Also, with
respect to the load that the drones can carry, the combined total weight cannot exceed 55 lb (Choi-Fitzpatrick et al., 2016). None-
theless, the drone being within the visual line of sight during the operation is still a prevailing rule. The latter regulation means that
fully automated drone delivery still is a future scenario.

Looking at the potential use of drones to deliver goods, it can be seen that there are limitations to the distance, the flight
endurance of the drone’s battery, and the capacity that these flying vehicles can carry. However, considering the synchronization of
drones and trucks when delivering goods can be of great importance in reducing operational costs or delivery times. It is observable
that the disadvantages of a truck is counteracted by the advantages of flying vehicles and vice versa. The use of airborne robots
capable of safely grasping and transporting small packages will significantly change the delivery industry, since it will be an im-
portant tool to assist drivers in making deliveries, allowing more deliveries per hour without covering additional miles (Trop, 2016).

In the operations research literature, delivery of small packages are frequently formulated as a Vehicle Routing Problem (VRP)
(Toth and Vigo, 2014) where a number of trucks are based at a common depot and delivery routes starting and ending at the depot
are constructed in order to serve all delivery requests and minimize routing costs. After the emergence of drones as a delivery option
it has been envisioned that each truck can be equipped with a supporting drone. The drone can take care of some of the deliveries
while using the truck as launch and recovery site (allowing the truck to move between launch and recovery if the drone is used).
Modelling the addition of drones leads to the Vehicle Routing Problem with Drones (VRP-D). The first works that study the cooperation
between truck and drone used the Traveling Salesman Problem (TSP) (Applegate et al., 2011) as a base model.

The pioneers in studying the truck-drone problem were Murray and Chu (2015), who formulated the Flying Sidekick Traveling
Salesman Problem (FSTSP). The problem is a variant of the TSP where only one truck equipped with a single drone delivers the goods
to customers. The drone is dispatched from a location to deliver goods to a customer and meet again in a rendezvous location with the
truck. While the drone is flying, the truck can visit other customers, however, it will have to recover the drone at the rendezvous
location before the battery of the drone runs out. In this case, the objective is to minimize the completion time of the route. Recent
studies, as Murray and Chu (2015) and those presented in Section 2, have investigated the advantages of using these two vehicles for
operations management, comparing the results with distributing the goods only using the truck. The benefits obtained are noticeable
in terms of completion time.

This paper studies an extension of the VRP where each truck is collaborating with a single UAV. Since the problem is a gen-
eralization of the classical VRP, it isNP -hard to solve. Although it is not the main contribution of the paper, a new mathematical
formulation for the problem is presented, which is an extension of the FSTP for the multi-truck case, and includes capacity and time
completion constraints, while having cost minimization as objective function. An Adaptive Large Neighborhood Search (ALNS)
metaheuristic is presented for solving the multi-truck problem. The algorithm represents a new approach for route planning of both
vehicles in cooperation. It is experimentally shown that solutions of very high quality can be obtained, and the results provide
significant savings in operational cost compared to the truck-only case.

Section 2 presents a review of the literature related to Vehicle Routing Problems using drones for delivery of goods. Most of these
studies focus on the TSP and there seems to be very few papers focusing on the application of several trucks. Section 3 reports the
mathematical model for the VRP-D, which is inspired by the mathematical model presented by Murray and Chu (2015). The

Fig. 1. Example of a delivery drone. Photo by Sam Churchill. This image is available at: https://www.flickr.com/photos/samchurchill/
14586999783/ and licensed under CC BY 2.0: https://creativecommons.org/licenses/by/2.0/.
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formulation includes different vehicles, multi-trucks, capacity constraints and time limitations. Section 4 is dedicated to the ALNS
metaheuristic, which will be described in detail and adapted to solve this variant of the VRP. Furthermore, it is described how the
initial solution is obtained. Section 5 deals with the generation and analysis of the instances used for the problem presented in this
paper and the study of the performance of the selected algorithm to evaluate it in the different scenarios. Likewise, a comparison of
the performance of the algorithm against the case of not using drones is presented and discussed. Finally, a study concerning the
modification of different characteristics of the drones is assessed. The paper is concluded and future research is discussed in Section 6.

2. Related literature

Technological progress has allowed drones to be increasingly used in the civilian sector, where one of the most immediate
applications is the delivery of goods. This extends the classical TSP and the VRP to use UAVs for complete or partial delivery. The
literature for TSP and VRP is comprehensive as can be seen in Applegate et al. (2011), Eksioglu et al. (2009) and Toth and Vigo
(2014). Among the many variants of these problems, there are a few papers considering delivery of goods in combination with UAVs.
Also, there are conceptually related variants of these problems in the literature.

The model considered in this paper has similarities with the FSTSP formulation by Murray and Chu (2015). This is an optimi-
zation problem of parcel deliveries using a single truck with a single drone in synchronization. The objective is to reduce the duration
time of the route to service all customers and return both vehicles to the depot. The paper also presents a different problem that is
applicable to scenarios in which the distribution center is close to a significant proportion of customer that may be serviced by the
UAV, the Parallel Drone Scheduling TSP (PDSTSP). In this problem, a single truck and a fleet of UAVs work together to deliver the
goods to customers, although synchronization between the UAV and the truck is not needed since the truck operates independently
on the remaining customers. Furthermore, saving heuristics for both formulations are provided by the authors, obtaining con-
siderable improvements in the solution with respect to the truck-only case. Later, Ponza (2016) presents a Simulated Annealing
metaheuristic for the resolution of an improved formulation for the FSTSP, whereas Freitas and Penna (2018) present a hybrid
heuristic, where the initial solution is obtained by solving a MIP model for the TSP route, which is converted to a FSTSP by an
improvement heuristic, based on several truck-only neighborhoods and a single truck-to-drone relocation. Ham (2018) studies an
extension of the PDSTSP, where the drone can perform multiple trips to carry out pick-up and deliver operations. A Constraint
Programming approach is proposed to solve this variant of the problem.

Within the last-mile delivery concept, in which a truck collaborates with a drone to make deliveries, there are more problems that
are worth noting, such as the TSP-D (Agatz et al., 2015). The TSP-D is very similar to the FSTSP, but it is assumed that the drone is
faster than the truck by a factor and both vehicles travel on the same road network. It is therefore possible to provide a bound on the
maximum attainable gains that can be achieved by using the two vehicles in union versus the simple case of using a truck exclusively.
Moreover, this problem is assuming that the truck can wait for the drone in the same position that it is launched, an aspect that was
not considered in FSTSP. A heuristic approach is presented, based on a route first—cluster second procedure with a greedy and exact
partitioning algorithm as well as the consideration of an iterative improvement procedure to find a solution. Later, Poikonen et al. (in
press) presented different heuristics based on a branch-and-bound algorithm for the TSP-D, considering only a subset of the potential
package delivery orders at each node. Mathew et al. (2015) study a similar problem, called the Heterogeneous Delivery Problem
(HDP), for the scheduling and routing problem of the cooperating vehicles in urban environments, while minimizing the total
delivery cost. In this problem all deliveries are done by the drone and the truck is waiting at a single point (called a street vertex)
while the drone is doing a delivery. A number of street vertices are given and not all of them have to be visited. The authors propose a
solution approach by reducing the problem to the Generalized Traveling Salesman Problem (GTSP), which can be solved by existing
heuristic methods. Moreover, the authors propose additional algorithms for solving the special case of the HDP where all street
vertices are considered warehouses. In this version the truck becomes superfluous, since the drone can just fly between warehouses to
collect goods to be delivered. Lastly, an iterative approach for the TSP-D is proposed by Yurek and Ozmutlu (2018). At each iteration
the solution approach is divided into two stages, determining the truck route in the first-stage and assigning the drone customers in
the second-stage.

Another problem for the parcel delivery with UAVs is considered in Ha et al. (2018). Like FSTSP, the launch and recovery
operations for the drone are again restricted to different locations. A Mixed Integer Linear Programming (MILP) formulation is
proposed as an extension to the formulation proposed by Murray and Chu (2015). Nonetheless, the objective function is focused on
minimizing the overall operational costs, which includes the transportation cost as well as a penalty for wasted time, incurred when
vehicles need to wait for each other. The paper presents two different heuristic approaches, known as TSP-LS and Greedy Randomized
Adaptive Search Procedure (GRASP). The first algorithm is an adaptation of the saving-algorithm proposed by Murray and Chu
(2015) to solve the cost-minimization problem, whereas the second algorithm is a metaheuristic based on a split procedure to
construct a feasible solution of the TSP-D from a TSP solution. The performance of the methods is compared under different objective
functions and construction heuristics. The effectiveness of the GRASP algorithm is documented, outperforming TSP-LS in terms of
solution quality. Furthermore, the GRASP algorithm, with a min-time objective function, is compared with FSTSP, achieving better
results for small instances with 10 customers.

Four versions of a “single drone and single truck” routing problem are studied by bin Othman et al. (2017). Common to all
versions is that the truck’s route is predetermined. The two main variations of the problem considered are (1) the truck can stay at a
single point while launching and receiving the drone, (2) the truck has to move between launching and receiving the drone. Two
more variants are obtained by disallowing that the drone can move together with the truck (hitch a ride). The paper studies com-
plexity of the different versions, polynomially solvable cases and approximation algorithms.
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Carlsson and Song (2017) and Campbell et al. (2017) use continuous approximation methods for the strategic analysis of the
design of hybrid truck-drone delivery systems. Carlsson and Song (2017) show that the efficiency of the delivery system is pro-
portional to the square root of the ratio of the speed of both vehicles. Moreover, the authors develop intuitive heuristic rules to
determine the coordinated routes of the vehicles. On the other hand, the results provided by Campbell et al. (2017) highlight the
economic advantages of such a system in many settings, especially with multiple drones per truck. However, the authors show that
the benefits from the truck-drone delivery system are dependent on the relative operating and idle costs of both vehicles, and spatial
density of customers.

The drone literature is mainly focused on the use of drones exclusively or in combination with a single truck, especially with focus
on delivery operations. There seems to be few papers dealing with the joint work of a fleet of trucks equipped with a series of drones.
The most interesting is presented by Wang et al. (2017), which presents a theoretical study of the maximum savings obtained when
using drones in a fleet of vehicles. The goal remains to minimize the total time to complete the routes. The coordination between the
vehicles in this problem provides a theoretical bound on how beneficial the drones can be, confirming in the results the time saved in
comparison to the case of simply using the fleet of trucks. This work is extended by Poikonen et al. (2017) where the effect of limited
drone battery life and the effect of having two different distance matrices for the trucks and drones are considered. Relations to the
close-enough VRP (CEVRP) are also considered. In the CEVRP, the truck does not have to visit all customer but just travel “close-
enough” to each customer. An application of this problem is, for example, reading of meters using wireless technology. Pugliese and
Guerriero (2017) present a mathematical formulation for the multi-truck approach with time windows and minimization of the total
transportation cost, and Daknama and Kraus (2017) propose a nested-local search heuristic for solving the Vehicle Routing with
Drones (VRD), where drones are allowed to be travel between trucks.

Finally, Otto et al. (2018) present an exhaustive review of optimization problems considering the use of drones for operations
planning to civil applications. The authors give an overview of more than 218 articles in the field, most of them published in the five
past years, but they do not include papers dealing with military and security applications of drones or obstacle-avoiding path
planning. The paper highlights the recent growing presence of drones in business activities and the advantage to combine and assist
the operations to available vehicles and robots.

3. The vehicle routing problem with drones

Given a fleet of homogeneous driver-operated delivery trucks, each of them equipped with a single UAV or drone, the task is to
deliver packages to a given set of customers, each of whom must be served exactly once by either the driver-operated delivery truck
or the UAV operating in coordination with the truck. Each truck with its corresponding UAV on board must depart from, and return
to, a single depot. The two vehicles may depart (or return) either in tandem or independently to the depot. When the drone is not
operational, it will be transported by the truck, saving battery power. The drones can be dispatched from the truck and picked up
again by the same truck in a different location multiple times along the truck route. However, the drone can visit only a single
customer each time due to the limited payload capacity and there is a maximum flying endurance due to battery capacity. A time is
associated with the launch and recovery of the drone, as well as a service time for the customers when delivering the packages. The
trucks have a limited capacity that must be respected and the route of the trucks should not exceed a certain time limit during the day
of operation. The objective is to minimize the overall cost of the operation of using the fleet of vehicles while respecting the capacity
and time constraint, and while meeting the customers’ demand. A visual representation of a solution to the problem is depicted in
Fig. 2.

3.1. Mathematical formulation for the VRP-D

We will now present a mathematical formulation for the VRP-D. The mathematical formulation is an extension of the MIP
formulation of the FSTSP presented in Murray and Chu (2015), taking into account the time at which a truck and/or a UAV visits a
customer. The truck and the UAV must be synchronized in time during the truck’s route, except at the end, where the truck and the

Fig. 2. Example of a VRP-D solution. The solid lines indicate the route of the trucks, while the dashed lines indicate the trips of the drones. Filled
circle nodes represent customers that, due to a heavy delivery, can only be visited by the truck and emptied circle nodes represent customers that
can be visited by either the truck or the drone. Triangle nodes corresponds to drone visits in the solution.
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UAV can arrive separately to the depot. Moreover, the capacity and the completion time of the routes are considered. The mathe-
matical formulation is extended with an extra index indicating the truck assigned to the route.

3.1.1. Definitions
The following sets will be used for this formulation.

• = …C c{1, 2, , }: Set of customers.
• C C: Subset of customers that may be serviced by the UAV, i.e. whose demand can be carried by a drone.
• = +D c{0, 1}: Depot nodes indicating the beginning and end of the route.
• = … +N c c{0, 1, , , 1}: Set of all nodes.
• = …N c{0, 1, 2, }0 : Set of nodes from which a vehicle may depart.
• = … ++N c c{1, 2, , , 1}: Set of nodes to which a vehicle may arrive.
• =+

+i N i( ) { }: The set of nodes that can be reached from node i N0.
• =i N i( ) { }0 : The set of nodes that can be used to reach node +i N .
• = +A i j i N j i{( , ): , ( )}0 : Set of feasible arcs.
• = …V m{1, , }: Set of homogeneous trucks, where m is a sufficiently large number.

The parameters required for the mathematical formulation are introduced below. The truck and the drone do not present the same
features, and this is reflected by different parameters for each vehicle.

• ij
T : Time required for a truck to travel from i N0 to +j N .

• ij
D: Time required for a UAV to travel from i N0 to +j N .

• cij
T : Cost for operating a truck to travel from i N0 to +j N .

• cij
D: Cost for operating a UAV to travel from i N0 to +j N .

• Q: Capacity of the trucks.
• qi: Demand of customer i C .
• e: Flight endurance of the battery of the UAV.
• Sei

T : Service time for the truck at customer i C .
• Sei

D: Service time for the UAV at customer i C .
• SL: Required time for launching the UAV.
• SR: Required time for recovering the UAV.
• M: A sufficiently large number. A precise value is given in the following.
• Tmax : Maximum duration time of a route.

Furthermore, additional notation is needed for the identification of the possible three-node sorties from where a UAV can operate
in the problem. Let P be the set of possible sorties, represented by the tuples i j k, , . The first node represents the launch position of
the UAV, the second node represents the customer that is visited by the UAV, and finally, the third node represents the recovery
position of the UAV. Hence, an element i j k, , belongs to the set P if the following conditions hold:

• The launch position i N0 of a tuple is the location from which a UAV can be launched, corresponding to the location from which
a truck can depart.
• The delivery position j C j i{ : } of a tuple is the set of customers that can be serviced by the UAV different from the launch
position i.
• The rendezvous position or recovery position + + + ++k N k i k j SL SR Se e{ : , , }ij

D
jk
D

j
D of a tuple is the location at

which the UAV can be recovered by the truck while respecting the battery life.

Furthermore, the tuples +i c0, , 1 are excluded from P for all i C . These tuples correspond to drone deliveries with launch and
rendezvous position at the depot. For a sortie =s i j k, , , we define its cost as = +c c cs

D
ij
D

jk
D. We define +Pi as all the sorties from P

with a launch at node i N P, k0 as all the sorties from P with a recovery at node +k N and Pj as all the sorties from P that delivers to
customer j C .

The formulation makes use of the following variables.

• xij
v: Binary variable indicating if truck v V travels from i N0 to +j N .

• ui
v: Continuous variable indicating the position of the visit i N in the route of truck v V .

• ti
v: Continuous variable indicating the time in the route of truck v V arriving to location i N .

• ti
v: Continuous variable indicating the time of a UAV from truck v V arriving to location i N .

• pij
v: Binary variable indicating if a customer j C is visited after location i N0 in the route of truck v V .

• ys
v: Binary variable indicating if the sortie s P is used in the route of truck v V .

3.1.2. Mathematical formulation
We can now formulate a MIP model for the VRP-D.
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t T y t v V k C1 ,k
v
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s P
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v

k
v

k (22)

+t T y t v V k C1 ,k
v
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s
v

k
v

k (23)

+ +
+

e T y t t v V i N k N1 , ,max
s P P

s
v

k
v

i
v

0

i k (24)

u u Mp v V i N j C i( ) , , { }j
v

i
v
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v

0 (25)

+u u M p v V i N j C i( ) ( 1) 1 , , { }j
v

i
v

ij
v

0 (26)

+
+ +

t T y y p t v V i N k N b C b3 , , , { }k
v
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s P P

s
v

s P
s
v

ib
v

b
v

( )
0

i k b (27)

x v V i j A{0, 1} , ( , )ij
v (28)

y v V s P{0, 1} ,s
v (29)

u t t v V i N, , 0 ,i
v

i
v

i
v (30)

p v V i N j C i{0, 1} , , { }ij
v

0 (31)

The objective function (1) minimizes the operational cost when visiting the customers. Constraint (2) ensures that each customer is
visited exactly once, either by a truck or by a drone. Constraint (3) ensures that all the trucks must depart from the depot at most
once. Similarly in (4), it has to be ensured that all the trucks must return to the depot at most once. Moreover, it is prohibited to travel
between depots as given by (5). The flow conservation constraints for the truck are defined in (6). The subtour elimination constraints
for the truck are defined in Constraints (7) and (8), referring to the position a customer is visited in the truck’s route. Moreover, the
capacity constraint is given in (9). Additionally, the UAV can be launched and recovered at most once from each node, as given by
Constraints (10) and (11). Constraint (12) makes sure that if the UAV is launched and recovered in location i N0 and +k N
respectively, then the truck visits the same locations.

The initialization of the times for the truck and the UAV at the beginning of each route are given in (13) and (14). Moreover, the
maximum duration of a route is established by imposing a limit to the time of returning to the depot by the vehicles, as stated in (15)
and (16).

The time constraints (17) for the truck movement, defines the time at which the truck arrives to the location with respect to the
corresponding actions that can happen in between. The time constraints for the drone movement, defining the time a UAV visits a
customer according to the truck position are defined in (18) and (19). Constraint (18) ensures that if a UAV is launched from location
i N0 to customer j C , then the arrival time for the UAV to customer j has to be greater than the arrival time for the truck to
location i plus the travel time for the UAV between the location and the launch time of the UAV. Similarly for the recovery operation,
(19) ensures that if a UAV finishes serving a customer j C and flies back to the truck at location +k N , then the arrival time of the
UAV to location k has to be greater than the arrival time of the UAV to location j plus the travel time between the locations, the
service time of the UAV at customer j and the recovering time of the UAV.

The time synchronization constraints for the truck and the UAV are defined in (20)–(23). These constraints impose that the launch
and recovery operations are time synchronized. Note that the synchronization is not needed when the truck and the UAV are
separately coming back to the depot, hence the constraints (22) and (23) are defined for the set of customer C instead of +N .

The endurance constraint for the battery of the UAV is given by the launch and recovery variables. Constraint (24) assures that if a
UAV is launched from position i N0 to customer j C to be recovered at position +k N , then the difference in time between the
operations has to satisfy the endurance time of the battery.

The binary variable pij
v defines the order in which the truck makes the visits, establishing whether one customer is visited before

another on the route. The value for this variable is assigned according to the difference in the position between the location as stated
in (25) and (26). Assuming the departure location i N0 and the customer j C , if the truck does visit the customer j after being in
location i, then the difference between the position variables ui

v will be positive, imposing the value 1 to pij
v. Otherwise, if the

difference is negative, pij
v is imposed to 0. When a truck does not visit a customer in the route, the previous constraints (7) and (8) set

the position of the visit to zero. Therefore, in constraint (26) a 1 is added on the right hand side to ensure that pij
v is set to zero when

both ui
v and uj

v are zero.
Constraint (27) is defined to avoid that new launches occur while the UAV is already flying in the route. The arrival time of a UAV

to another customer location b C from which the UAV can be launched again has to be greater than the arrival time to the location
+k N if and only if a drone is recovered at location k occurred earlier. This is taken into account by the order in which the truck
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visits locations i and b (pib
v), if a launch occurs from position b and if a drone is recovered at location k. Finally, the domain of the

variables is defined in (28)–(31).

3.2. Discussion of the mathematical model

The mathematical formulation presented in Section 3.1 is an extension of the formulation presented by Murray and Chu (2015).
The formulation keeps the sortie selection from the set P in a single variable and the variables are extended with an extra index to
account for different trucks (ys

v). We have considered an unlimited homogeneous fleet of delivery trucks, assuming that there are no
specific distinctions between them. As expected, the formulation becomes harder to solve with the inclusion of this extra index,
increasing considerable the running time as the number of trucks and customers increase compared to the case of a single vehicle.

Contrary to Murray and Chu (2015), the objective function is no longer focused on reducing the completion time for the trucks
returning to the depot, instead, there is a maximum duration time for all routes. This comes from the assumption that drivers have
contracts with maximum workable-hours per day that has to be respected. Additionally, there is a cost cij

T and cij
D associated with the

truck and the UAV respectively for traversing arc i j( , ), where the cost entails for an estimation of the fuel consumption incurred by
the vehicles. We are interested in studying the problem from a cost-minimization perspective, as seen in (1), rather than from a time-
minimization. Technology is continuously developing, and in the near future, autonomous trucks will be available for delivery
purposes, where drivers will no longer be needed. Therefore, the driver cost is neglected in this case. Moreover, we could also assume
that the driver cost is a fixed cost already incurred in the drivers’ contracts. Therefore, it would be interesting to study the colla-
boration of both vehicles for delivery operations under a cost-minimization objective function, where the vehicles are operated
within a time limit as long as they incur minimum cost. Furthermore, it is important to notice that drone-arc costs can be direction
dependent in reality, due to the payload and speed, among many others. However, we do not have actual data for correctly modeling
these generalizations, and hence assume that drone-arc costs are symmetric and independent of the load.

The endurance constraint (24) can be more easily defined than in Murray and Chu’s formulation. The number of constraints can
be reduced, as it is not necessary to consider the arrival time of the UAV to the delivery position. Instead, the constraint only accounts
for the time difference between the launch and recovery positions incurred by the UAV, if there exists such sortie.

The model presents several constraints regarding the prohibited moves that cannot be carried out by the UAV. These moves
correspond to illegal dispatches of drones in the route. For a better understanding, as shown in Ponza (2016), visual representation of
the prohibited moves are depicted in Figs. 3–6. The solid and the dashed lines indicate the route of the truck and the UAV re-
spectively. Similarly, circle nodes correspond to customers visited by the truck whereas triangle nodes correspond to customers
visited by the drone. The filled squared node correspond to the single depot. Firstly, the truck cannot wait for the UAV in the same
location from which it was launched. In the formulation, this move is not considered in the definition of the sorties and its visual
representation can be seen in Fig. 3. Similarly, due to the definition of the depot nodes, it is not allowed for a UAV to operate
independently from the truck, i.e. start the operation from the depot, deliver the goods to the customer, and then come back to the
depot. This is also ensured by the set of feasible sorties P. The visual representation of this prohibited move is similar to the previous
one, but considering the depot node, as shown in Fig. 4.

Finally, (27) is ensuring that new launches do not occur before the previous UAVs in the same route have been recovered.
Regarding the definition of the variables pij

v, the time of the launch tb
v of the UAV from the location b C is forced to be greater than

the time of the recovery tk
v of the previous UAVs. The corresponding prohibited moves can be seen in Figs. 5 and 6.

3.3. Parameters

The mathematical formulation for the VRP-D introduces several parameters reflecting the characteristics and operation times
related to the UAV and the truck. We have attempted to find values close to reality, but there are no eligible parameters to be
considered in the models as drone delivery is still in early stages to be applied in reality. Table 1 summarizes the parameters and their
values. The values have been found in the literature or have been used by companies in their prototype models.

The subset C of potential drone customers is determined by the maximum load capacity of a drone QD. Given a customer i C ,
the customer is a potential drone customer if the drone can carried its demand, i.e q Qi

D. Amazon states that its drones can carry up
to 5 lb (2.27 kg) (Allain, 2013), although there are companies like Workhorse that are capable of carrying up to 10 lb (4.54 kg) (Trop,
2016). As future technological achievements may increase the load limit, we set the maximum load for drones to 5 kg. Furthermore,
the trucks used for the operations are assumed to be similar to Long Wheelbase Vans, such as a Ford Transit Custom Van 330 L2 2.2
TDCi 125 CV, with a total payload of 1400 kg and an average fuel consumption of 0.07 l/km, as indicated in its technical specifi-
cations. However, since the trucks have to be equipped with the UAV material (i.e. the drone, batteries, tools, among other things),

Fig. 3. Prohibited move of the UAV for the launch and recovery operation.
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the capacity of the truck is reduced by 100 kg. Therefore, the payload capacity of truck fleet is imposed to 1300 kg for the truck-drone
case, whereas in the truck-only case, the truck capacity is imposed to 1400 kg.

The speed for the different vehicles is defined assuming the average speed in the operations. The speed limitation of the truck may
vary according to the road network, but it is assumed that the trucks operate with a constant average speed of 35 mph (Ponza, 2016).
For the UAV’s speed, we will look at companies researching drones for delivery operations, such as Amazon and Workhorse, stating
that drones can fly at up to 50 mph (Trop, 2016). Similarly, regarding the endurance of the UAV, the battery total life is set to 30min
(Kharpal, 2016).

The distance dij between locations i N0 and +j N in the problem is given as the Euclidean distance between the coordinates in
the plane. This distance matrix can be used to determine the travel time matrix ij

T and ij
D for the truck and the UAV respectively.

Assuming the equation of motion, as the speed T D, of the vehicles (UAV and truck respectively) was set to constant, the travel time
matrix can be calculated as = d /ij

T D
ij

T D, , . The cost matrix cij
T D, is determined by the distance matrix dij. The truck’s cost is related to

the fuel price fp and consumption rate fc as =c fp fc mc d· · ·ij
T

ij. As the cost of using the UAV is considerably cheaper than using the
truck, it is set to a factor of the cost matrix for the truck, as =c c·ij

D
ij
T . Although it might be difficult to determine a precise factor of

Fig. 4. Prohibited move of the independently operation of the UAV.

Fig. 5. Prohibited move of new launches.

Fig. 6. Prohibited move of new launches within a sortie.

Table 1
Values for the parameters in the main configuration of the problem.

Parameter Notation Value Reference

Launch Time SL 1min Murray and Chu (2015)
Recovery Time SR 1min Murray and Chu (2015)
Truck Speed T 35 mph Ponza (2016)
Drone Speed D 50 mph Trop (2016)
Endurance e 30min Kharpal (2016)

Truck Capacity w/ drones Q 1300 kg See text
Truck Capacity w/o drones Q 1400 kg See text

Drone Capacity QD 5 kg Trop (2016)
Fuel Price fp 1.13 €/l See text

Fuel Consumption fc 0.07 l/km See text
Miles Converter mc 1.61 km/mi –
Drone Factor Cost 10% Kharpal (2016)

Maximum Route duration Tmax 8 h Standard working hours
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the total cost, = 0.1 seems to be a good approximation, since Workhorse determined an approximate value of 2 cents per mile
because of the electricity (Kharpal, 2016), which closely corresponds to between 10–15% of the total truck’s cost. Moreover, the fuel
price is set to 1.13 €/l, as the average diesel price in Europe by the end of year 2017.

Finally, the model presents several big-M constraints. The value M is solely used in the subtour elimination constraints and in the
order on which the truck visits the locations. As the ui

v variables determines the position in the truck’s route, the worst case scenario is
that only one truck visits all the customer and return to the depot and this is given by the cardinality of the set of all the nodes, i.e.

= = +M N n| | 2.

4. Adaptive large neighborhood search

In this section we propose an ALNS metaheuristic for the VRP-D. The ALNS framework has been applied to many other VRP
variants in the past and is often easy to adapt to new problems (Pisinger and Ropke, 2010). Large Neighborhood Search (LNS) was
introduced by Shaw (1998) and is based on progressively improving an initial solution by repeatedly destroying and repairing the
current solution. The ALNS framework presented by Ropke and Pisinger (2006) is an extension of LNS, which presents many destroy
and repair methods that are statistically chosen according to the performance achieved during the search. Destroy methods eliminate
part of the current solution, while repair methods rebuild the partial solution. Typically, the destroy methods contain some ran-
domness to be able to destroy different parts of the solution and thus to diversify the search for new solutions. The repair methods can
also be stochastic to avoid building the same solution if the same partial solution is encountered several times during the search. An
important parameter of the metaheuristic is the degree of destruction. If a too small part of the solution is destroyed, it can be difficult
for the method to escape local minima. On the other hand, if too much of the solution is destroyed, the repair can have difficulties
reconstructing a good solution.

Let and + denote the set of destroy and repair methods, respectively. At each iteration, a destroy method d and a repair
method +r are selected to modify the current solution. The selection of each of these methods are chosen probabilistically, based
on the weights assigned to the different methods and using the roulette wheel selection principle. At the beginning, the weights are
initialized with equal probability and they are updated iteratively with respect to a reaction factor [0, 1] and the score of the
corresponding method, as defined in Table 2.

Let wij be the weight of the method i at iteration j. Therefore, after each iteration, the weights are updated as follows:

= ++w w (1 )i j ij, 1

To avoid that the algorithm moves randomly through the solution space, it is necessary to control and accept the solutions that are
created by each destroy/repair iteration. The ALNS metaheuristic is therefore extended with an acceptance criteria borrowed from
Simulated Annealing (see e.g. Černỳ (1985) and Kirkpatrick et al. (1983)). The algorithm makes use of a temperature parameter T
that controls the acceptance probability. If a destroy/repair operation results in an solution st with better objective value than the
current solution s, then st is always accepted. If the new solution st has a higher objective value then st is accepted with probability

e
f s f s

T
( ) ( )t

where f s( ) denotes the objective value of s. We let T start at valueTst and it is linearly decreased towards zero (following Santini et al.
(2018)). We wish to use time as a stopping criterion for the algorithm and for that reason we want T to reach zero when the time has
run out. Therefore, we control the temperature using the elapsed time. Let t elap denote the elapsed time since the algorithm was
started and let tmax denote the time limit imposed on the algorithm. We then update the temperature using the formula

=T T t
t

1st
elap

max

The algorithm is stopped as soon as t telap max . The elapsed time is measured using CPU time.
The pseudo-code for the algorithm is given in Algorithm 1. Different from other ALNS metaheuristics the algorithm includes a

feature that restores the best solution so far if a certain number of iterations has passed without any improvement (Lines 15 to 17 in
Algorithm 1).

Table 2
Score of the corresponding method.

Parameter Description

1 The new solution resulted in a new global best solution
2 The new solution resulted in a solution which was accepted with a cost better than the cost of the current solution
3 The new solution resulted in a solution which was accepted with a cost worse than the cost of the current solution
4 The new solution is rejected
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Algorithm 1. Pseudo-Code for the ALNS Algorithm.

4.1. Initial solution

An initial solution is constructed by means of heuristics. The initial solution is divided into three steps: a construction algorithm that
only considers service by truck; a local search algorithm that also only considers service using the trucks; and a drone addition algorithm.

The chosen construction algorithm in the first step is the Nearest Neighbor Algorithm. The truck route is built progressively
looking for the nearest neighbor to the last visit added as long as the capacity and the time of the route have not been exceeded. If one
of these resources is exceeded, a new route is initiated and the process is repeated until all customers have been visited. The solution
will be improved in the second phase by means of an improvement heuristic through relocation moves (Fosin et al., 2014). The
insertion of customers visited by drones is carried out in the third phase. First, a set D of all customers that can be visited by the drone
in the current solution is constructed. Then, for each customer in D, the customer is removed from the truck route and all possible
feasible sorties in the current solution where the customer is visited by the drone are identified. The selection of the sortie is
performed by the function FindSortie c s( , , ) as shown in Algorithm 2, which finds the best sortie where customer c D is a drone
customer in the partial solution s with respect to a threshold cost . The check of the feasibility of the sortie in Line 6 ensures that
prohibited moves are not constructed in the current solution. The customer is then returned to the truck route and the method
continues until all customers in the subset D are checked. The sortie incurring the biggest saving is retrieved and it is added to the
current solution. This phase is repeated until no more savings can be obtained.

Algorithm 2. FindSortie c s( , , ) function for finding the best sortie for customer c in the partial solution s with respect to a threshold
cost .

The initial solution is further improved by a local search heuristic with a string relocation neighborhood. Basically, the local
search heuristic selects a string of customers to be relocated in the same order somewhere else in the current solution. The operator
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depends on the route to relocate the string, defining a 2 opt move if the string is relocated in the same route and a string relocation
move if the string is relocated to another route. The string can have any length, but the start location and end location of the string
should not be locations that are visited while a drone is conducting a sortie. The implementation of the string relocation may improve
the obtained solution in the previous phases, as it is able to eliminate crosses between visits that cannot be eliminated by single
relocation moves. Fig. 7 presents examples of how a string is relocated in the same route (top) and in another route (bottom). It can be
seen in green the string to be relocated, while the read arcs corresponds to the arcs that will be removed (left) and added afterwards
(right).

4.2. Destroy methods

In each iteration, the ALNS algorithm destroys a part of the current solution. The number of customers to remove is controlled
by the parameters c, low and clim using the formula

= c C cmin(max( , ·| |), )low lim (32)

Here, is the ratio of customers to remove, while clow and clim defines absolute lower and upper bounds on the number customers to
remove. The parameter clow is chosen as a random number between the interval 1 to 3 while parameter clim is set to 40. In the formula
we consider as the main parameter, but clow and clim are included to ensure that the values for are sensible even for very small and
very large instances.

Two destroy methods are defined as described below. In each iteration one of them is chosen randomly with equal probability.
The same probability is used throughout the whole course of the algorithm. The adaptive part of ALNS is therefore only used for the
repair methods.

4.2.1. Random destroy
The first destroy method removes random customers from the solution until customers have been removed. If a customer that

hosts a launch or recovery operation is chosen for removal, the corresponding drone customer(s) are removed as well. We note that
both a launch and a recovery operation can take place at a single customer and therefore the removal of one truck customer can lead
to the removal of two drone customers. Hence, the method may remove one or two more customers than specified by .

4.2.2. Cluster destroy
In the second destroy method the removal of customers is carried out in a zone around a random seed customer. A random

customer c1, defining the focal point of the removal, is selected and removed from the current solution. Then, progressively, cus-
tomers are removed until customers have been removed. In each step the next customer to be removed is chosen randomly from a
subset of the two closest customers to the focal customer c1 in the current partial solution. The elimination of customers occurs in a
concentrated zone of the current solution but adding some noise to the elimination procedure to avoid obtaining the same partial
solution before the repair step. Like the previous random destroy method, if the corresponding customer to be removed presents a
launch and/or recovery operation, the drone customer(s) will be removed as well. The pseudo-code for this destruction method is
outlined in Algorithm 3. Notice that in line 9, removed is incremented by 1,2 or 3 depending on whether any extra drone customers
are removed when removing c.

Fig. 7. Example of the String Relocation algorithm in the same route (top) and in another route (bottom). On the left, there is the initial solution
after the first three steps and on the right, there is the initial solution improved after the string relocation algorithm.
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Algorithm 3. Cluster Removal of Customers.

4.3. Repair methods

During the second phase, the algorithm rebuilds the current partial solution. The destroy step has removed a subset of customers
(denoted D) from the solution and these need to be reinserted. The chosen repair methods are greedy algorithms, as they repair the
solution by inserting the customers from D one-by-one in the position that seems most promising. The repair methods ensure that
infeasible solutions are not constructed. If no feasible insertion for a customer can be found in the current partial solution by the
repair method, the customer is kept for a later insertion or a new route is opened to serve such customer. The ability to open a new
route ensures that the repair methods always will find a feasible solution, since it is always feasible to serve a customer by a truck,
when the customer is alone on the truck route. The adaptive part of the algorithm is defined in the selection of repair methods. These
methods indicate the strategy to be followed when deciding how to reconstruct the partial solution. Four repair methods are defined
and the ALNS metaheuristic chooses one of them according to the corresponding weights which are assigned to the repair methods
iteratively. The repair methods are described in the following subsections.

4.3.1. Greedy truck-first sortie-second repair method
The first repair method is divided in two phases. Phase one inserts the customers from D into the routes as truck visits while phase two

changes the service of some customers from truck to drone. The method is shown in Algorithm 4. The first phase of the repair method takes
place in Lines 1–4. A random customer from D is selected and the function TruckBestInsertion(c,s) inserts customer c in the partial solution s
by a Best Insertion algorithm, i.e. at the position that increases cost the least. The function only considers truck-service insertions in the
current routes and the opening of a new route for the selected customer c. Moreover, as the truck-insertion can be performed within a sortie,
the function also checks if the endurance time of a sortie is respected after the insertion. Hence, only feasible solutions are considered when
inserting the customers in the current partial solution. The procedure is repeated until no more customers are left in D. Lines 6–17
implement phase two of the algorithm. Similarly, a random customer is selected from the set C of all customers in the current solution s. In
line 9 we check if the selected customer c currently is visited as a truck-only customer (no launch or recovery is taking place at c) and we
check whether the demand qc of customer c is within the drone capacityQD. If these checks are positive, we remove the customer from the
route and we attempt to find a suitable way of serving c by a drone using the function FindSortie(c,s,η), as defined in Algorithm 2, where is
the objective value of s before the removal of customers c. Only if this results in a solution with lower cost, the move is carried out.

Algorithm 4. Repair method Greedy truck-first sortie-second.
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Fig. 8 shows an example of the repair method. Initially, a set of customers has been removed from the current solution (Fig. 8 left).
Then, the truck route is reconstructed through the best insertion algorithm for the removed customers (Fig. 8 middle). Finally, for all
those customers that can be still visited by a drone, the algorithm finds the best sortie to add in the current solution (Fig. 8 right).

4.3.2. Nearby-area truck-first sortie-second repair method
This repair method works in a similar way as the previous repair method presented in Section 4.3.1, however, the seeking of new

solutions in the neighborhood is no longer performed by the Best Insertion algorithm. The method is divided in two phases, as defined
previously. Nonetheless, during the first phase, the customers are inserted into the routes as truck visits by randomly selecting a
feasible position from a set of nearby positions to the customer in the current partial solution. The nearby area is defined within a 5-
mile range. Furthermore, in the second-phase, the service of some customers is changed from truck to drone. Similarly as before, a
random truck-only customer c with a portable demand by a drone (q Qc

D) is selected. The customer is removed from the route and
we identify all the feasible sorties that can be added to the current partial solution as presented in function FindSortie(c s, , ).
However, instead of selecting the sortie which incurs the biggest saving, we randomly select a sortie that does not increase the cost of
the partial solution more than 10% with respect to the partial solution before the removal. This method can be seen as a weaker
version of the previous repair method presented in Section 4.3.1. Instances of smaller size can benefit from this method, as it presents
a greater variability when searching for sorties.

4.3.3. Closest insertion repair method
The next repair method attempts to insert customers using both truck and drone services, as outlined in Algorithm 5. For each free

customer c, it only attempts insertion into one route, namely the one that contains the customer closest to c in the current partial
solution, this takes place in lines 5–7. The function AttemptBestInsertion c r( , ) considers every feasible insertion of c into route r, both
using the truck and the drone and performs the least costly insertion. If it is not possible to insert c in r then c is added to the set of
leftover customers DN . It can be observed that this repair method internally calls another repair method, as the customers left in DN
are inserted using the repair method described in Section 4.3.1 (see Line 10).

Algorithm 5. Repair method Closest Insertion.

4.3.4. Heavy insertion repair method
Finally, the last repair method follows a heavy-first policy. The method retrieves all customers from the set D with a demand

greater than the drone capacity QD, and these customers are removed from D and added to a new set DT of truck customers to be
inserted. First, a random truck-customer c from DT is selected and inserted in the current partial solution s through the Best Insertion
Algorithm, as defined in the function TruckBestInsertion(c,s). This process is repeated until no more customers are left in DT . In this

Fig. 8. Example of Greedy truck-first and sortie-second repair method in the algorithm. The solid lines indicate the route of the trucks, while the
dashed lines indicate the trips of the drones. Filled circle nodes represent customers that can only be visited by the truck and circle nodes represent
customers that can be visited by either the truck or the drone. Triangle nodes corresponds to drone visits in the solution.
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way, we first introduce those customers that cannot be serviced by a UAV. Next, the remaining customers in D are inserted using the
close insertion repair method described in Section 4.3.3. Similarly as before, there is also an internal call to the previous repair
method. In the first place, the left-out customers in D are attempted to be inserted in the route of their closest active neighbor, and
next, the remaining customers are greedily inserted as defined in Section 4.3.1.

5. Experiments and empirical results

The ALNS metaheuristic was implemented in Java, and run on a Huawei XH620 V3 computer with Intel Xeon Processor 2660v3 at
2.60 GHz. The mathematical model presented in Section 3.1.2 has been solved using CPLEX version 12.7.

5.1. Test instances

Since we have no knowledge of real-life instances publicly available, we generated random instances to test the algorithm. The
central depot is always located at coordinates (0,0), while the customers are generated in a grid of dimensions ×d d2 2 around the
depot, with coordinates following a uniform distributionU d d( , ). The random generated instances are named n.m.t, where n is the
number of customers in the scenario, m is the dimension of the grid and t is the generic name of the scenario. Moreover, a few
clustered instanced are studied in Appendix B.

Amazon assumes that drones can operate a round trip with a range of about 10 miles from the distribution center (Rose, 2013).
Setting the dimension of the grid d to values greater than 10 miles might generate scenarios where the drone cannot work in-
dependently, therefore the interaction of the drone with the truck is enforced. On the other hand, generating bigger grids for >d 20
will expand the horizon and cover a fairly large area, typical of rural areas. Hence, for the experiments, we will generate instances
with grid sizes between ×5 5 and ×40 40.

Amazon argues that 86% of its deliveries correspond to items weighing less than 5 lb (2.27 kg) (Allain, 2013). Moreover, since the
truck is only operated by the driver, we impose an upper limit on the weight of packages delivered by the truck. According to UPS, the
maximum load for a package transported in the truck is 150 lb (68 kg) (UPS, 2017). Following the above limits, the customer
demands are generated according to a uniform distribution, depending on whether the delivery can be served by a drone or not. Let c
be a customer in the instance and let <p0 1 be a random number associated with the customer in the instance. Then the cus-
tomer’s demand (in kilograms) is given by:

=
<

q c p
q U p
q U

( , )
(0, 2.27) if 0.86
(2.27, 68) otherwise

c

c (33)

The aforementioned assumption imposes that capacity constraints may not play a major role, even for some larger instances. As
specified in Sections 3.2 and 3.3, we have assumed a homogeneous fleet of standard delivery vans with a capacity limit of 1300 kg for
the truck-drone case. For some instances, the capacity constraint may become irrelevant, as the total demand of customers will be less
than the truck capacity. However, this corresponds to real-life scenarios for small package delivery where we envision that drones
may be used. Several routes may still be necessary, but more likely because trucks run out of time compared to that they run out of
capacity. Finally, all instances have been made available at Zenodo.1

5.2. Experiments and results

In the following sections, the performance of the algorithm and the results obtained for VRP-D will be studied, using the con-
figuration for the problem-parameters (i.e. drone endurance, truck speed, etc.) described in Section 3.3. In Section 5.2.3 we perform a
sensitivity study for some of the problem-parameters to analyze the effect of different drone features.

The algorithm-parameters were found using a parameter tuning experiment, documented in Sacramento (2017). The algorithm-
parameters are set as follows: initial temperature factor =T 0.004ST , degree of destruction = 0.15, and non-improvement parameter

=noImprovMax 1000. The reconstruction of the solution is based on greedy methods, therefore, it makes sense that the non-im-
provement parameter is set to a small value. If the algorithm cannot find better solutions in the given number of iterations, it returns
to the best known solution to continue the search from this origin. Moreover, the degree of destruction, although being a small
percentage, destroys an important part of the solution within the specified threshold. Furthermore, the remaining algorithm-para-
meters concerning the adaptive part of the metaheuristic were set to the values as documented in Ropke and Pisinger (2006).
Therefore, the reaction factor is set to = 0.9 and the scores of the methods to = = =33, 9, 131 2 3 and = 04 .

The initial temperature TST is calculated as TST times the value of the initial solution. This adaptation will allow the algorithm to
adjust the temperature according to the size of the instance. To avoid too small temperatures for small instances, the initial tem-
perature is increased by 10% for these instances. As an example, in Fig. 9 the value of the accepted solutions at each iteration when
solving instance 12.10.3 (left) and instance 150.10.3 (right) is shown along with the value of the best known solution found so far
at each iteration. Moreover, the number of times that the different repair methods were accepted during the running of the algorithm
and the number of times the accepted solutions provided a new global best solution are shown in the adjacent tables. Focusing on

1 https://doi.org/10.5281/zenodo.2572764
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instance 12.10.3, it can be seen that the optimal solution is found in the early stages of the algorithm, hence the flat curve for the
best known solution. During the search, the algorithm inspects the solution space, accepting solutions that are worse than the current
best with certain probability according to the value of the current temperature. Due to the size of the problem, the algorithm accepts
very poor moves at the beginning of the search, the accepted solutions are considerably worse than the best know solution and the
graph fluctuates notoriously. However, as the temperature is decreased, these fluctuations are more controlled and only very mild
deteriorating solutions are accepted. On the other hand, for instance 150.10.3, the fluctuations in the graph are less aggressive and
the curve for the best known solution presents a more gradual drop, as we do not have information about the optimal solution.
Similarly, the algorithm is more likely to accept solutions that are much worse than the current best know solution at the beginning of
the algorithm, but in a more controlled manner. Correspondingly, towards the end, the algorithm only accepts solutions which are
slightly worse. Furthermore, from the tables below, it can be observed how the first repair method (Section 4.3.2) is mainly beneficial
for small instances. The adaptive part of the algorithm ensures that this repair method is mainly used when it can help the search.

5.2.1. Experiments with small instances
First, the mathematical formulation will be tested against the ALNS metaheuristic. It is known that VRP is anNP -hard problem,

which makes VRP-D also a computationally difficult problem to solve. Thus, in order to be able to run the mathematical models to
optimality and compare the solutions, a collection of 36 small instances are considered. Each of the instances has been run in Java
with an execution of exactly =t 5max min., and the results can be found in Table 3. The table provides information regarding the value
of the optimal solution (z ) and the execution time (t MIP) to optimality by the MIP model, as well as the value of the best obtained
solution (z ALNS), the average objective function (µALNS), the standard deviation ( ALNS) by the metaheuristic, together with the
average amount of time (topt) in seconds within the 5min time limit before the metaheuristic encounters the best solution of each
individual run in the 10-run batch, for each instance. Finally, the ratio of the average value of the metaheuristics with respect to the
optimal solution is calculated as =z 1Ratio

ALNS µ
z .

The small instances are constructed with 6, 10 and 12 customers randomly generated in a grid of dimensions × ×5 5, 10 10 and
×20 20. From the table it can be seen that the optimal solution can be reached relatively easily in all cases by the metaheuristic.

Moreover, for all instances, the average objective value µ coincides with the optimal value of the instances, therefore, the standard
deviation and the optimality gap present a zero value. This proves the effectiveness of the metaheuristic, which is able to find the
optimal solution for any of the 10 runs of the instances.

From the results, it can also be seen that when the number of customers increases, the mathematical model becomes more difficult
to solve to optimality in a reasonable amount of time. As an example, CPLEX spends nearly 17 h to solve to optimality instance
12.05.1. On the other hand, the metaheuristic is able to obtain optimal solutions for all instances quickly, using at most a couple of
seconds, with some exceptions.

5.2.2. Larger instances
Due to the computational complexity, the MIP model cannot be used to evaluate the performance of the metaheuristic for larger

instances. In order to check the efficiency of the algorithm and the quality of the solution obtained by the metaheuristic when
considering drones in delivery operations, the solutions will be compared to the solutions for the truck-only case. For this purpose,
112 instances have been generated, containing between 6 and 200 customers distributed in areas from ×5 5 miles to ×40 40 miles

Fig. 9. Left: Results for instance 12.10.3. Right: Results for instance 150.10.3. Top: The figures show the cost of the accepted solutions and the
best know solutions as function of the iteration count. Bottom: The tables show information about the number of iterations, the number of times the
corresponding repair method produced a solution which was accepted, and the number of times such solution provided a new global best solution.
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and the ALNS metaheuristic has been applied 10 times to each instance with an execution time of exactly =t 5max min. Two main KPIs
are extracted from these experiments, the saving obtained by serving the customers using a mixed truck/drone approach compared to
using a truck-only approach (SVRP) and the saving obtained by the ALNS metaheuristic over the initial solution in the mixed truck/
drone case (SI). For each instance, the two KPIs are calculated as shown in Eq. (34), using the notation z ALNS: the best objective found
using ALNS and drones, zVRP: best objective found for the truck-only case, zin objective found by the heuristic for generating initial
solutions for the drone case (described in Section 4.1).

= =z
z

z
z

SVRP 1 and SI 1
ALNS

VRP

ALNS

in (34)

zVRP was obtained using an updated version of the ALNS metaheuristic described in Pisinger and Ropke (2007), the ALNS meta-
heuristic was applied 10 times to each instance and the best objective value was kept. As the drone constraints have been removed
from the problem, the truck will have a larger capacity, corresponding to the space that would occupy all the material related to the
drone in the truck. This means that we, in the truck-only experiment, have set =Q 1400 kg, as discussed in Section 3.3.

Fig. 10 (left) shows the savings with respect to the initial solution. In most of the instances, it can be observed how the initial
solution is improved by 15–25% by the ALNS metaheuristic, thus showing the effectiveness of the ALNS metaheuristic to escape local
optima and to obtain better solutions. For small instances, the saving with respect to the initial solution is scattered on the chart. This
might be because near-optimal solutions can sometimes be obtained by the initial solution, presenting a small gap with respect best-
known solutions.

Fig. 10 (right) shows the savings with respect to the truck-only approach. The saving is typically in the range of 20–30% and
sometimes even larger. It is noticeable that the smallest instances have the largest variation in saving relative to the truck-only
solution. We explain this observation by the fact that the placement of one or two customers in a small instance can have a huge
impact on the potential saving. If one or two customers are placed far from the depot and both must be served by the truck (due to
heavy deliveries) it can be impossible to obtain a significant saving for that instance compared to an instance where such customers

Table 3
Performance of the metaheuristics for small scenarios. The column t MIP reports the execution time (in seconds) in CPLEX for obtaining the optimal
solution z , whereas the column topt reports the average amount of time (in second) within the 5min time limit employed by the metaheuristic to
obtain the best know solution z ALNS.

Scenario C| | z t s( )MIP z ALNS µALNS ALNS t s( )opt z (%)Ratio
ALNS

06.05.1 5 1.09821 0.926 1.09821 1.09821 0.000 0.014 0.00%
06.05.2 6 0.84215 3.506 0.84215 0.84215 0.000 0.001 0.00%
06.05.3 5 1.21137 2.429 1.21137 1.21137 0.000 0.001 0.00%
06.05.4 5 0.94599 1.365 0.94599 0.94599 0.000 0.003 0.00%
06.10.1 5 2.40611 7479.000 2.40611 2.40611 0.000 0.004 0.00%
06.10.2 6 1.67927 6.802 1.67927 1.67927 0.000 0.002 0.00%
06.10.3 6 1.32552 5.360 1.32552 1.32552 0.000 0.003 0.00%
06.10.4 6 1.44307 5.228 1.44307 1.44307 0.000 0.001 0.00%
06.20.1 6 2.67759 4.726 2.67759 2.67759 0.000 0.011 0.00%
06.20.2 5 4.31959 1.164 4.31959 4.31959 0.000 0.054 0.00%
06.20.3 6 3.82475 1.813 3.82475 3.82475 0.000 0.002 0.00%
06.20.4 6 3.67872 2.170 3.67872 3.67872 0.000 0.001 0.00%
10.05.1 5 1.65563 13.368 1.65563 1.65563 0.000 0.002 0.00%
10.05.2 9 1.45185 433.150 1.45185 1.45185 0.000 0.339 0.00%
10.05.3 8 1.47357 236.110 1.47357 1.47357 0.000 0.193 0.00%
10.05.4 9 1.28489 345.220 1.28489 1.28489 0.000 0.002 0.00%
10.10.1 8 2.32647 369.920 2.32647 2.32647 0.000 0.026 0.00%
10.10.2 8 3.15856 121.280 3.15856 3.15856 0.000 0.075 0.00%
10.10.3 7 2.55274 88.410 2.55274 2.55274 0.000 0.427 0.00%
10.10.4 9 2.53931 246.430 2.53931 2.53931 0.000 0.008 0.00%
10.20.1 7 4.45240 6.650 4.45240 4.45240 0.000 3.946 0.00%
10.20.2 8 6.16776 180.160 6.16776 6.16776 0.000 0.011 0.00%
10.20.3 9 4.54630 251.140 4.54630 4.54630 0.000 1.197 0.00%
10.20.4 7 6.15355 275.360 6.15355 6.15355 0.000 49.170 0.00%
12.05.1 9 1.37381 1161.880 1.37381 1.37381 0.000 31.444 0.00%
12.05.2 12 1.05899 62131.170 1.05899 1.05899 0.000 1.110 0.00%
12.05.3 10 1.44765 433.900 1.44765 1.44765 0.000 0.028 0.00%
12.05.4 10 1.58100 2259.660 1.58100 1.58100 0.000 0.100 0.00%
12.10.1 10 2.68103 811.260 2.68103 2.68103 0.000 81.447 0.00%
12.10.2 10 2.68420 1004.350 2.68420 2.68420 0.000 0.059 0.00%
12.10.3 9 2.88048 793.870 2.88048 2.88048 0.000 0.030 0.00%
12.10.4 10 2.31418 176.740 2.31418 2.31418 0.000 0.011 0.00%
12.20.1 11 5.77759 3723.830 5.77759 5.77759 0.000 0.272 0.00%
12.20.2 10 8.27254 1081.570 8.27254 8.27254 0.000 0.004 0.00%
12.20.3 9 4.16693 24.520 4.16693 4.16693 0.000 0.054 0.00%
12.20.4 11 6.08859 1335.740 6.08859 6.08859 0.000 0.210 0.00%
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are placed close to the depot. In instances with many customers such variation is to a certain extent cancelled out because larger
instances, by-and-large, would contain a similar mix of easy and hard customers that must be served by the truck. A more detailed
study of the behavior of the savings with respect to the truck-only approach is carried out in Appendix C.

Overall the impact of the drones is significant, showing remarkable improvements to the objective value. The cooperation of both
vehicles presents a significant saving that must be considered when planning the routes of the vehicles. It is important to point out
that the objective is based on an estimate of fuel costs and does not cover all the cost involved in goods distribution. An important
factor that is not considered is, for example, driver wages. Giving a more precise estimation of the total cost involved in both
distribution modes is an interesting subject for future work. The complete results for all 112 instances are shown in Table 4 in
Appendix A. Furthermore, from the results presented in Table 4, it can be seen that even the initial solution presents a considerable
saving with respect to the truck-only case.

Fig. 11, on the left, shows the average number of sorties used by the solutions to each instance. It can be seen how the number of
customers visited by drones grows linearly as the number of customers increases, corresponding approximately to a total of 50% of
potential customers to be visited by a drone. It is important to remark that due to the definition of the tuples i j k, , for the drone
operations, where i j k , there is a theoretical limit on the maximum number of sorties that can be operated. Considering that a
route with nt truck visits can at most launch +n 1t drones, a VRP-D instance with n customers can operate at most n2

3
sorties with n

3
trucks. However, deploying so many trucks would be very expensive, and the number of drone deliveries is within reasonable limits.

In the same Fig. 11, on the right, it can be seen how the average usage of the total endurance time tends to decrease as the number
of customers increases. Moreover, this reduction is present in all scenarios, indicating a greater use of the endurance time as the
scenario grid increases. We understand the usage of the total endurance time as the flying time of the drone while performing a sortie.
In general, it can be seen that no more than 60% of the endurance time is consumed between the launch and recovery of a drone. In
the following Section 5.2.3, a more detailed sensitivity analysis for this parameter is carried out.

Finally, Figs. 12 and 13 show the best known solutions found by the metaheuristics for the VRP-D and the VRP for a scenario with
20 and 100 customers respectively. From the figures it can be seen how the final routes for the trucks are affected by the addition of
drones in the problem. It is noticeable how the drone routes tend to shorten the truck route by sending the drone to the hard-to-reach
customer, if possible.

5.2.3. Experiments with the drone features
The main setup provides a study of the performance of the algorithm using problem-parameters set to realistic values used by

companies and other studies. These parameters have been selected according to certain assumptions as explained in Section 3.3.
However, as there is still no real-life parameters on drones delivery, we would like to study the relative importance of different drone-
parameters on the model output. In this section we perform a sensitivity study by changing the value of certain parameters of interest.
For this, we will fix the main configuration of the problem, and for each parameter of interest, we will study the impact of altering the
value of the aforementioned drone-parameter. The sensitivity analysis will help us draw some preliminary conclusions on the col-
laboration of both vehicles for delivery operations. For a clear comparison, we have set the size of the grid to ×30 30. The ex-
periments are carried out for a collection of 100 randomly generated instances of four scenarios, each of them consisting of 25

Fig. 10. Average saving of the best known solution with respect to the initial solution (left) and to the truck-only case (right) per instance.

Fig. 11. Average number of sorties (left) and average sortie endurance utilization (right) per instance.
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instances. The scenarios are 100.30.X, 150.30.X, 200.30.X and 250.30.X.
Battery Cost The collaboration of both vehicles is the innovative feature in this VRP-approach. We are studying the problem from

a cost minimization perspective, where the use of the drone is given as a percentage of the fuel consumption of the truck. In the main
setup, this value was set at 10%, but what would happen if the cost associated with using a drone was more expensive? Would it be
beneficial with regard to the truck-only case?

Fig. 14 shows the impact of the cost of the drone-arcs in the different scenarios. Clearly, the advantages of the collaboration of
both vehicles is reduced as the associated drone-cost is increased. The operational cost can be reduced considerably if the use of
drones is relatively cheaper than operating a truck. However, the savings become negligible as the drone-cost is increased to 50% of
the truck cost. The same trend can be observed in the number of sorties, which decrease as the use of drones becomes more expensive.

Fig. 12. Best known solution for the VRP-D and VRP for an instance with 20 customers. The solid lines indicate the route of the trucks, while the
dashed lines indicate the trips of the drones.

Fig. 13. Best known solution for the VRP-D and VRP for an instance with 100 customers. The solid lines indicate the route of the trucks, while the
dashed lines indicate the trips of the drones.

Fig. 14. Left: Average saving with respect to the best known solution for the truck-only case as function of the drone-arc cost for each scenario.
Right: Average number of sorties as function of the drone-arc cost for each scenario.
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Fig. 14 also indicates that, for a fixed drone cost (e.g. 10%), the curve that describe the savings as a function of the number of
customers has a bell-like shape. This shape is also visible in the following experiments and in Appendix C. We explain this shape as
follows.

• In a scenario, with few customers scattered in a large area, it may be difficult to make use of the drones if endurance is low
compared to the time needed to travel between customers. Even if endurance is not limiting it may be necessary for the truck to
drive long stretches between customers since the truck has to move for every sortie performed and since there are some customers
that only can be served by the truck.
• As we increase the number of customers while keeping other parameters fixed we are enlarging the possibilities for using the
drones since more potential customers will be within range and we have better possibilities for stringing together good routes
where the trucks drive little and the drones do most of the traveling.
• At a certain point, the area becomes saturated and adding more customers no longer increase savings, but rather decrease the
saving per customer. One can think of the extreme scenario where customers are located so close that the truck could already have
served the next customer in the time we spend on launching and recovering the drone. Some saving is still possible, but not as
much as in a more sparse scenario.

Part of the explanation for the drop-off in saving for larger number of customers can also be that the time limit of the heuristic is
fixed to 5min and therefore solution quality deteriorates for larger instances. Furthermore, Fig. 14 shows instances in the ranges from
100 to 250 customers. In the future it could also be interesting to investigate the saving for small number of customers as Fig. 10
seems to indicate a higher saving with around 10 customers compared to 50 customers. One cannot make firm conclusions from
Fig. 10 given the small number of samples for a fixed set of instance parameters.

Endurance The main setup from Section 3.3 sets the total time endurance of a drone to 30min, however, as shown in Fig. 11,
drones do not consume all the endurance time once they are dispatched. If the endurance time is decreased, the battery can be
reduced, which would decrease cost and the reduced battery weight could be used for carrying higher loads instead. At the same time,
technology is constantly improving, and it is not hard to image drones equipped with better batteries that will allow them to stay
longer in the air. By increasing the endurance, the set of feasible drone visits will increase. Therefore, we investigate whether it would
be relevant to increase or decrease the endurance time.

From Fig. 15 it can be seen that there needs to be an appropriate endurance time for the collaboration of the vehicles to be
efficient. Modest savings are obtained when the endurance time is low, because drones do not have enough time to perform feasible
sorties, and these savings are much lower when the customers are more spread within the grid. Negative savings are observed in
scenarios where the drone endurance time is set to 5min. In this case 3min are spent on launch, recovery and serving the customer,
leaving only 2min of flying time. With such a short flying time no or only a few sorties will be possible and the instances almost turn
into ordinary truck-only VRP. Assuming identical vehicle capacity (recall that in the truck-only scenario the truck can carry 100 kg
more, see Section 3.3) an exact method for the VRP-D would never experience negative savings. Since the proposed method is only a
heuristic, negative savings can occur. The negative savings indicate that the heuristic for the truck-only case (Pisinger and Ropke
(2007)) is superior to the VRP-D heuristic when the VRP-D heuristic cannot make use of its drones. This is no surprise as the VRP-D
heuristic is not constructed for this scenario.

When the endurance time increases, drones have more room for maneuver and large savings can be obtained, especially for larger
instances, as the average distance between customer is reduced. However, due to the limited drone capacity of carrying a single
payload per sortie, increasing the endurance past 15min hardly impacts the value of the objective function and the number of drones
launched. The fact that the objective function is almost unchanged may seem surprising at first, but it can be explained. One reason
can be found by inspecting the solution for VRP-D shown in Fig. 13, left. The customers shown with filled circles have to be visited by
the truck due to their demand, which limits the flexibility even when the drone endurance is increased. Furthermore, given the
definition of the problem (following Murray and Chu (2015)), we require the launch customer to be different from the recovery
customer. This further limits the use of the drones in a single route, as it implies that we at most can do a +k 1 drone deliveries on a

Fig. 15. Left: Average saving with respect to the best known solution for the truck-only case as function of the endurance time for each scenario.
Right: The table shows the average number of sorties and the average time of the total endurance time used by the sorties for each scenario and for
the different endurance times.
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route with k truck visits. Finally, the drone sorties that become possible with the increased endurance are often not very attractive,
since they require traveling far and are time consuming.

We notice that the savings curves for 7.5 and 10min endurance at first look different from the bell-like shape observed in Fig. 14
and in Fig. 15 for higher values of endurance. We believe that for these values, we are only observing the beginning of the bell-like
curve. If we increased the number of customers in these scenarios we expect to see that the saving again decreases.

Drone Speed The drone speed is another critical factor for the collaboration of both vehicles in the delivery process. The value of
the drone speed was set to 50 mph in the main setup, and we are interested in studying what would happen if the drone operated at
the same speed as the truck, as well as slower speeds and considerably superior ones. Similar to the endurance time, by increasing the
drone speed, the set of feasible sorties is expanded, since the drone can travel faster and reach more customers within the endurance
time.

As seen from Fig. 16, the speed of the drone has a minor impact on the objective function. As the speed of the drone increases, the
savings with respect to the truck-only case grows more monotonously. However, the collaboration of both vehicles brings a notable
benefit even operating drones at speed lower than the trucks, with saving above 20%. Having a look at the table presented on the
right in Fig. 16, the total number of sorties remains stable as the speed increases. However, it is observable that the average delivery
time of the drones is progressively reduced as the speed increases. Moreover, we observe that the saving curve of the 25 mph
scenario, does not exhibit the bell-like shape as observed earlier. We explain this by the limited number of 25 samples instances used
for this experiments. We expect to observe that ordinary curve if the experiment was based on an even higher number of instances.

Payload Capacity According to the main configuration, the maximum payload capacity of a drone is set to 5 kg. Nonetheless,
there is no doubt that drones could, in the future, be equipped with better engines that will allow them to carry heavier loads. This
increase in drone capacity will extend the set of customers that may be serviced by the drone.

The effect of the maximum payload capacity is much more significant as we increase this value, with a clear rise in the savings
with respect to the truck-only case, as it can be seen from Fig. 17, left. On the right-hand side, it is shown that by increasing the
payload capacity of the drone, the number of potential drone customers increases. This means that customers, who could only be
visited by the truck, might now be visited by dispatching a drone. Thus, the truck’s route can be more efficient, launching more
drones and perhaps reducing the total cost of the route by not forcing to send a truck to far-off locations. Due to the distribution
followed by the customers’ demand, the savings tend to stagnate in the intermediate values of the figure, since larger payload only
means a slight increase in the number of potential drone customers. Nevertheless, when no limits on the maximum payload is
imposed, the savings for the truck-drone case are higher, due to the possibility of reaching more distant customers with drones. As an
example, Fig. 18 shows an instance where 56% of the customers have a demand below 2 kg, whereas 88% of the customers have a
demand below 20 kg. Considering the maximum payload capacity of the drone to 20 kg supposes an increase of 32% in the number of

Fig. 16. Left: Average saving with respect to the best known solution for the truck-only case as function of the drone-speed for each scenario. Right:
The table shows the average number of sorties and the average time of the total endurance time used by the sorties for each scenario and for the
different considered drone speeds.

Fig. 17. Left: Average saving with respect to the best known solution for the truck-only case as function of the maximum payload capacity for each
scenario. Right: The table shows the average number of sorties and the average percentage of potential drone customers for each scenario and for
the different maximum payload capacity. A potential drone customer belongs to the subset C if its demand can be carried by drone, as discussed in
Section 3.3.
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potential drone customers. It can be observed how customers that previously were forced to be visited by a truck now become drones
customers, reducing the total operational cost significantly.

6. Conclusion and future researches

Amazon, DHL and Workhorse, among many other companies, are intensively studying how drones can be used for delivery
activities. This new technology has also stimulated the development of several mathematical models and solution techniques for this
problem, contributing with an analysis of the possible benefits of using small aircrafts in the delivery of merchandise. Especially, the
cooperation of the drones along with the trucks on the day of operation can improve the last-mile delivery, since the routes can be
designed more efficiently in terms of time and cost savings.

Analyzing the results obtained in the previous section, the clear advantage of using these small aircraft for delivery activities is
remarkable. Comparing the results with the case of only using trucks in the problem, the savings are noteworthy. Even the initial
solution in most cases surpasses the best known solution for the trucks-only approach. However, we must point out that the objective
considered is based on an estimate of fuel costs and does not cover all the cost involved in goods distribution.

The sensitivity analysis shows some preliminary conclusions on the drones’ endurance, which has to be significantly reduced
compared to our initial estimate of 30min before it has a clear impact on the solutions obtained. The sensitivity analysis also pointed
out that the speed of the drone is not a determining factor in the objective function, bringing notable benefits even operating drones
at speeds lower than the trucks. On the other hand, by modifying the maximum payload-capacity of the drone, a reduction on the fuel
cost can be more easily observed. Routes can be built more efficiently since the number of potential drone customers increases. This
might avoid the dispatch of a truck to visit some remote customers, enabling better routes by sending drones to those positions.

Many extensions of the VRP-D can be studied in future works. One interesting subject is the dynamic case, where routes can be
altered during the day of operation through cancellations, break-down of vehicles and other factors related to time and capacity of
the customers. These constraints pose a problem of greater complexity where the optimal solution may be utopia. To solve this
problem it would be necessary to develop different heuristic methods that can solve the problem quickly to come back to the
scheduled plan as fast as possible without affecting many of the routes.

Other possible extensions to the problem that can successfully increase the parcel-delivery are related to the number of drones per
vehicle, their total transport capacity and the interaction with the vehicle. The increase on the number of drones per vehicle and
payload capacity of the drones could significantly impact the operational cost of the problem. However, when considering this new
feature in the problem, energy consumption may be affected, influencing the speed and endurance of the drone due to the increased
transport load. One possible adaptation to this consideration in the problem is the inclusion of a factor that affects the speed and
duration of the battery as more loads are considered to be transported. Furthermore, due to the definition of the objective function, it
would be interesting to consider the case where the truck can wait in the same location where it launches the drone, as considered in
Agatz et al. (2015). Therefore, several potential launches of drones could be done from the same location while the truck is stopped,
saving the total truck cost, since the truck is just waiting to recover the drone in the same location.

Finally, future research could investigate how to solve this problem to optimality through exact methods. Like other VRP-like
problems, the VRP-D has a structure that makes it possible to apply Dantzig-Wolfe decomposition to reach a tighter formulation.

Appendix A. Table result for large instances

Table 4 provides the results after running the metaheuristics in the 112 instances, where each instance is run in a 10-run batch
with a time limit of 5 exactly minutes. From the table the best known value (z), the average and standard deviation of the perfor-
mance of the algorithm (µ and , respectively), the average number of iterations (it), the cardinality of the set of potential drone
customers (C| |), the average number of drone customers in the solution ( C# ) and the average number of routes ( V# ) can be observed.

Fig. 18. Scenario with a light drone capacity (2 kg, left) with a total operational cost of =z 12.660 and a heavy drone capacity (20 kg, right) with a
total operational cost of =z 10.511. The solid lines indicate the route of the trucks, while the dashed lines indicate the trips of the drones.
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Table 4
Performance of the metaheuristics for each scenario.

Scenario C| | z ALNS µALNS ALNS itALNS C# V# zin SI (%) zVRP SVRP (%)

6.5.1 5 1.09821 1.09821 0.000 41959813 3 1 1.33681 17.85% 1.74449 37.05%
6.5.2 6 0.84215 0.84215 0.000 42802018 3 1 1.10843 24.02% 1.41679 40.56%
6.5.3 5 1.21137 1.21137 0.000 44620683 3 1 1.33722 9.41% 1.78165 32.01%
6.5.4 5 0.94599 0.94599 0.000 44129451 3 1 1.01979 7.24% 1.81631 47.92%
6.10.1 5 2.40611 2.40611 0.000 38949492 4 2 2.87963 16.44% 3.02602 20.49%
6.10.2 6 1.67927 1.67927 0.000 37191908 4 2 1.77023 5.14% 3.26563 48.58%
6.10.3 6 1.32552 1.32552 0.000 38426647 4 2 1.90326 30.36% 3.18434 58.37%
6.10.4 6 1.44307 1.44307 0.000 40046320 3 1 1.73451 16.80% 2.65423 45.63%
6.20.1 6 2.67759 2.67759 0.000 39483597 4 2 3.67040 27.05% 5.81887 53.98%
6.20.2 5 4.31959 4.31959 0.000 42665143 3 1 5.56104 22.32% 5.95116 27.42%
6.20.3 6 3.82475 3.82475 0.000 43387965 4 2 5.05161 24.29% 7.48706 48.92%
6.20.4 6 3.67872 3.67872 0.000 38621176 4 2 4.54767 19.11% 7.25279 49.28%
10.5.1 5 1.65563 1.65563 0.000 25746784 2 1 1.66376 0.49% 2.00444 17.40%
10.5.2 9 1.45185 1.45185 0.000 26450623 5 1 1.51512 4.18% 1.76462 17.72%
10.5.3 8 1.47357 1.47357 0.000 27265176 5 1 1.86194 20.86% 2.10786 30.09%
10.5.4 9 1.28489 1.28489 0.000 25627890 5 1 1.80316 28.74% 2.15180 40.29%

10.10.1 8 2.32647 2.32647 0.000 28019615 5 1 2.67365 12.99% 4.37806 46.86%
10.10.2 8 3.15856 3.15856 0.000 26639115 5 1 3.50870 9.98% 3.85290 18.02%
10.10.3 7 2.55274 2.55274 0.000 29000966 6 2 3.54566 28.00% 3.94166 35.24%
10.10.4 9 2.53931 2.53931 0.000 26113164 5 1 2.87111 11.56% 3.67069 30.82%
10.20.1 7 4.45240 4.45240 0.000 26201747 4 1 4.53510 1.82% 7.10035 37.29%
10.20.2 8 6.16776 6.16776 0.000 26938008 4 1 6.78446 9.09% 8.18607 24.66%
10.20.3 9 4.54630 4.54630 0.000 27736599 5 1 5.16542 11.99% 7.15878 36.49%
10.20.4 7 6.15355 6.15355 0.000 28239850 4 2 6.74167 8.72% 7.65948 19.66%
12.5.1 9 1.37381 1.37381 0.000 22287186 6 1 1.53008 10.21% 1.77670 22.68%
12.5.2 12 1.05899 1.05899 0.000 22431403 7 2 1.78259 40.59% 2.08454 49.20%
12.5.3 10 1.44765 1.44765 0.000 23479327 6 1 1.62929 11.15% 2.32577 37.76%
12.5.4 10 1.58100 1.58100 0.000 23118928 6 1 1.75405 9.87% 2.19318 27.91%

12.10.1 10 2.68103 2.68103 0.000 23554627 7 2 3.77076 28.90% 4.17530 35.79%
12.10.2 10 2.68420 2.68420 0.000 21947382 6 1 3.30802 18.86% 4.00144 32.92%
12.10.3 9 2.88048 2.88048 0.000 21958882 6 1 3.68373 21.81% 3.89544 26.06%
12.10.4 10 2.31418 2.31418 0.000 22823268 6 1 3.17127 27.03% 4.43975 47.88%
12.20.1 11 5.77759 5.77759 0.000 22746779 7 2 7.01873 17.68% 9.69233 40.39%
12.20.2 10 8.27254 8.27254 0.000 20178441 4 1 8.27325 0.01% 9.91900 16.60%
12.20.3 9 4.16693 4.16693 0.000 21708160 5 1 5.43964 23.40% 6.65320 37.37%
12.20.4 11 6.08859 6.08859 0.000 24023052 7 2 7.71453 21.08% 8.17198 25.49%
20.5.1 15 1.79347 1.79347 0.000 11301575 9 1 2.03456 11.85% 2.55338 29.76%
20.5.2 14 1.95401 1.95401 0.000 10631574 8 1 2.04774 4.58% 2.58028 24.27%
20.5.3 19 1.48658 1.48658 0.000 11114470 9 1 1.91912 22.54% 2.11026 29.55%
20.5.4 18 1.37893 1.37893 0.000 12616178 10 1 1.84439 25.24% 2.16427 36.29%

20.10.1 17 3.25253 3.25253 0.000 13287214 10 1 3.92297 17.09% 5.27324 38.32%
20.10.2 19 3.08938 3.08938 0.000 12565887 10 1 4.75887 35.08% 5.17932 40.35%
20.10.3 19 3.70226 3.72576 0.050 11718401 9.8 1 4.63102 20.06% 5.04668 26.64%
20.10.4 15 3.30890 3.31367 0.015 12508345 10 1 4.36469 24.19% 5.69902 41.94%
20.20.1 19 7.34453 7.35115 0.021 11638755 10 1 8.04799 8.74% 9.60624 23.54%
20.20.2 16 7.54889 7.54889 0.000 11942478 9 1 8.58928 12.11% 9.54910 20.95%
20.20.3 18 7.46100 7.47458 0.043 10418184 10 1 8.52744 12.51% 10.84568 31.21%
20.20.4 17 7.01331 7.01331 0.000 11091582 9 1 8.66985 19.11% 10.52166 33.34%
50.10.1 37 5.86134 5.86134 0.000 1110439 18 1 6.25507 6.29% 6.96079 15.79%
50.10.2 41 5.58493 5.62101 0.076 1351994 21.2 1 6.40940 12.86% 7.74661 27.90%
50.10.3 44 5.42240 5.42546 0.001 1453177 25 1 7.10793 23.71% 7.89376 31.31%
50.10.4 44 5.20834 5.35262 0.109 1762387 23.7 1 6.80485 23.46% 7.71366 32.48%
50.20.1 41 10.45526 10.45635 0.001 1313010 22 1 13.20900 20.85% 14.28486 26.81%
50.20.2 44 10.05611 10.05611 0.000 1396076 23 1 12.68456 20.72% 14.39691 30.15%
50.20.3 44 10.54249 10.65703 0.060 1337178 23 1 14.34467 26.51% 15.43061 31.68%
50.20.4 46 10.66415 11.00082 0.187 1299549 24.1 1 12.78350 16.58% 14.61995 27.06%
50.30.1 40 15.81788 15.81788 0.000 1509428 24 1 19.87087 20.40% 23.01535 31.27%
50.30.2 39 15.01482 15.46361 0.473 1427745 22.5 1 20.04851 25.11% 20.32863 26.14%
50.30.3 43 16.76899 16.77134 0.003 1340989 24 1 21.10088 20.53% 23.73563 29.35%
50.30.4 40 18.28746 18.28746 0.000 1138204 21 1 22.09943 17.25% 22.33797 18.13%
50.40.1 46 20.37508 21.17709 0.551 1230243 24.1 1.3 25.11031 18.86% 28.17186 27.68%
50.40.2 41 20.62624 20.62624 0.000 1277543 21 1 23.10381 10.72% 28.65285 28.01%
50.40.3 42 22.64523 22.70534 0.190 1132225 21.1 1 27.08039 16.38% 30.03933 24.61%
50.40.4 41 22.33708 22.78912 0.195 1222262 22.5 1 28.07438 20.44% 27.71988 19.42%
100.10.1 89 6.85741 6.89015 0.027 202025.6 47.5 1 8.92083 23.13% 10.18307 32.66%
100.10.2 89 7.58505 7.67814 0.081 165090.6 44.9 1 9.23212 17.84% 10.21628 25.76%
100.10.3 91 7.18353 7.30551 0.092 184845.5 45.3 1 8.80568 18.42% 10.12143 29.03%
100.10.4 82 7.45675 7.54594 0.064 165521.3 42.2 1 8.98069 16.97% 9.58098 22.17%

(continued on next page)
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Moreover, the savings with respect to the initial solution zin and to the best known solution for the VRP zVRP are computed (SI and
SVRP, respectively).

Appendix B. Clustered instances

The previous experiments have been carried out assuming that the customers’ location follow a uniform distribution around the
distribution center. Although this is a fair assumption, we would like to better simulate neighborhoods of delivery, where customers
are located in clusters, and test the performance of the algorithm. Therefore, we will generate a new batch of 10 randomly generated
clustered instances, named as n.m.c.t, where n is the number of customers, m is the dimension of the grid, c is the cluster label of
the instance and t is the generic name of the scenario.

The instances have been generated in a grid of dimensions ×30 30, where the central depot is still considered to be located at
coordinates (0, 0). For each instance, we will generate focal points around the grid, where is a random number in the interval 1–5.
Then, each customer is randomly assigned to a focal point and the customer’s location is generated to follow a normal distribution
centered on the focal point and with a standard deviation of 2 miles. As an example, Fig. 19 shows instance 150.30.c.10, where
customers are located in three clusters around the distribution center.

The ALNS metaheuristic has been applied 10 times to each clustered instance with a time limit of exactly 5min, and the results
can be seen in Table 5. The table provides information of the best know value (z), the average and standard deviation of the
performance of the algorithm (µ and , respectively), the average number of iterations (it). Moreover, the number of focal points (| |),
the average number of routes ( V# ), the cardinality of the set of potential drone customers (C| |) and the average number of drone

Table 4 (continued)

Scenario C| | z ALNS µALNS ALNS itALNS C# V# zin SI (%) zVRP SVRP (%)

100.20.1 90 13.60671 13.79462 0.114 123349.4 43.9 1 16.33884 16.72% 18.68459 27.18%
100.20.2 89 14.13399 14.53749 0.145 144851.9 45.7 1 17.14718 17.57% 19.21943 26.46%
100.20.3 87 13.70990 13.76722 0.065 169246.9 47.4 1 17.45722 21.47% 19.57115 29.95%
100.20.4 89 13.84944 14.19761 0.245 158024.7 46.9 1 18.50382 25.15% 20.59972 32.77%
100.30.1 84 22.58818 23.63641 0.546 288147.8 42.9 2 28.15762 19.78% 30.26120 25.36%
100.30.2 87 22.31432 22.38464 0.102 373620.6 45.1 2 26.18374 14.78% 29.15228 23.46%
100.30.3 91 23.71948 23.90941 0.114 327255.5 40.5 2 28.99190 18.19% 31.24545 24.09%
100.30.4 88 22.37011 22.65848 0.149 436002.3 43.1 2 26.60071 15.90% 29.45129 24.04%
100.40.1 85 29.13966 30.18073 1.109 517088.9 44.3 2 37.98380 23.28% 39.42798 26.09%
100.40.2 85 30.98999 31.20916 0.177 413419.1 45.2 2 39.43678 21.42% 41.23168 24.84%
100.40.3 89 29.02475 29.66526 0.309 448000.5 46.2 2 37.51525 22.63% 40.77274 28.81%
100.40.4 87 28.97348 29.20493 0.160 420257.9 41.7 2 37.16760 22.05% 40.03808 27.64%
150.10.1 125 8.79027 8.93509 0.057 57856.8 70.8 1 11.59840 24.21% 12.05540 27.08%
150.10.2 126 8.25905 8.41602 0.113 53928.8 70.2 1 10.76381 23.27% 11.59550 28.77%
150.10.3 141 8.49602 9.02065 0.215 47886.9 71.4 1 12.00592 29.23% 12.31929 31.03%
150.10.4 120 8.83734 9.03983 0.129 47691.9 62.4 1 11.24672 21.42% 11.93587 25.96%
150.20.1 132 17.31938 17.59636 0.372 65611.7 66 2 21.41857 19.14% 24.01554 27.88%
150.20.2 131 16.63405 17.45066 0.610 134442.8 68.7 2 23.71366 29.85% 24.19077 31.24%
150.20.3 128 17.40579 18.34468 0.512 108024.1 69.5 2 23.48900 25.90% 24.02131 27.54%
150.20.4 130 16.87516 17.47742 0.389 137595.5 70.7 2 23.60548 28.51% 24.48108 31.07%
150.30.1 130 25.98537 26.54882 0.333 126168.8 68.3 2 31.65118 17.90% 35.89031 27.60%
150.30.2 125 26.20552 26.74112 0.258 129856.2 67.8 2 33.74515 22.34% 35.38576 25.94%
150.30.3 130 25.31642 26.11368 0.456 133103.9 68 2 33.04898 23.40% 35.63752 28.96%
150.30.4 125 26.10274 27.29231 0.900 128121.4 63.7 2 32.40173 19.44% 35.03643 25.50%
150.40.1 137 34.01210 35.45338 1.059 125867 68.8 2.2 46.74029 27.23% 47.36621 28.19%
150.40.2 124 36.56164 38.29645 0.682 162347.4 66.1 2.3 47.78252 23.48% 49.99371 26.87%
150.40.3 125 36.65738 38.29545 0.896 162241.7 66.3 2.3 48.15427 23.88% 51.72573 29.13%
150.40.4 129 35.01556 36.06616 1.054 157272.4 67.7 2.2 46.55322 24.78% 48.88489 28.37%
200.10.1 173 10.09452 10.40499 0.163 24243.3 92.3 2 12.54765 19.55% 13.71736 26.41%
200.10.2 173 10.42260 10.61488 0.105 24545.7 90.4 2 13.59715 23.35% 13.92221 25.14%
200.10.3 177 9.79897 9.92350 0.057 75473.9 94 2 12.80248 23.46% 13.93832 29.70%
200.10.4 176 10.35528 10.63997 0.202 41038.9 89.8 2 13.26367 21.93% 13.90924 25.55%
200.20.1 178 21.21505 21.46013 0.259 55098.4 90.6 2 26.51774 20.00% 28.12148 24.56%
200.20.2 168 21.45845 22.04610 0.627 46691.8 87.4 2 26.92906 20.31% 27.98806 23.33%
200.20.3 176 20.85218 21.06040 0.131 49845.9 89.4 2 24.93983 16.39% 27.39656 23.89%
200.20.4 172 19.23495 20.18035 0.436 52022 87.8 2 25.65556 25.03% 26.62789 27.76%
200.30.1 171 30.36023 31.78264 0.764 82205.8 86.9 2.7 37.89680 19.89% 40.88607 25.74%
200.30.2 176 32.81279 33.21640 0.307 33974.5 87.7 2 38.32423 14.38% 41.67798 21.27%
200.30.3 171 32.25350 32.73727 0.358 29877.2 83.1 2 40.03489 19.44% 42.77400 24.60%
200.30.4 172 32.09314 32.76376 0.450 59024.9 90.9 2.5 40.50484 20.77% 42.47321 24.44%
200.40.1 172 41.49802 42.30479 0.556 95321.1 90.6 3 57.06515 27.28% 56.81091 26.95%
200.40.2 178 43.25021 44.22107 0.476 93067.4 89.6 3 55.14169 21.57% 55.84941 22.56%
200.40.3 165 43.33753 44.26132 0.642 100623 88.4 3 54.07578 19.86% 56.85219 23.77%
200.40.4 178 42.05785 43.33703 0.850 98119.2 89.8 3 53.38600 21.22% 55.68861 24.48%

D. Sacramento, et al. Transportation Research Part C 102 (2019) 289–315

312



customers in the solution ( C# ) can be observed. Finally, the savings with respect to the initial solution zin and to the best known
solution for the VRP zVRP are computed (SI and SVRP, respectively). As in Section 5.2.2, zVRP was obtained using an updated version
of the ALNS metaheuristic described in Pisinger and Ropke (2007), the ALNS metaheuristic was applied 10 times to each instance and
the best objective value was kept.

From the results in Fig. 19, it can be observed that the algorithm seems to show a similar performance as when solving uniformly
distributed instances, hence we can draw similar conclusions as discussed in Section 5.2.2. However, it seems that the algorithm
performs more steadily in clustered instances, presenting moderately low standard deviation. This may be due to the relative location
of the clusters. In some cases, the clusters are totally separated from each other, basically decomposing the problem into individual
problems, where each cluster is served by one vehicle. However, if the clusters are relatively close to each other, it may be ad-
vantageous to have routes visiting several clusters. As shown in the table, the average number of routes does not coincide with the
number of focal points in the instances. For example, the algorithm finds high-quality solutions for instance 150.30.c.10 where
customers from two clusters are combined into a single route. Nonetheless, the algorithm can be improved by incorporating more
specialized repair methods for clustered instances, which is an interesting subject for future work.

Appendix C. Drone savings as function of grid size and number of customers

The incorporation of drones in delivery operations brings significant savings in the operational cost, compared to the case of only
using delivery trucks. Certainly, the savings obtained from the collaboration of both vehicles vary according to the considered
scenario. In this section, we will present an analysis of the savings for different delivery scenarios. The experiments are carried out for
a collection of 375 randomly generated instances, corresponding to 15 scenarios, each represented by 25 instances.

Fig. 20 shows the distribution of the savings for the different scenarios, which are grouped by grid size, and further grouped by
number of customers. For this analysis, the main configuration of parameters is considered, as presented in Section 3.3. From the
figure, it is seen that, for each value of the grid size, the curve that describes the saving as a function of the number of customers has a
bell-like shape, i.e. the curve first increases until it reaches a peak from where it slowly declines as observed earlier. The figure clearly
visualizes that the variability for instances with few customers is much higher compared to that of instances with many customers.
This behaviour was already observed in the main text (Section 5.2.2). In the 30×30 scenario, we see that the 50 customer case has a
higher average saving compared to the 100 customer case. This is unexpected with respect to the bell-like saving curve “conjecture”.
We see two possible explanations: (1) either the computed average for the 50 customer case is far from the true average of the

Fig. 19. Instance 150.30.c.10, where customers are located between three clusters around the distribution center. The solid lines indicate the
route of the trucks, while the dashed lines indicate the trips of the drones..

Table 5
Performance of the metaheuristics for clustered instances.

Scenario | | C| | z ALNS µALNS ALNS itALNS C# V# zin SI (%) zVRP SVRP (%)

150.30.c.01 1 134 7.2521 7.3515 0.2225 49574.8 69.7 1 9.92438 26.93% 11.4568 36.70%
150.30.c.02 4 127 17.4822 17.6275 0.1085 114685.9 67.4 2 21.442 18.47% 22.4591 22.16%
150.30.c.03 5 135 19.0905 19.2616 0.1044 134913.3 68 2 23.6677 19.34% 26.3510 27.55%
150.30.c.04 3 134 17.4954 17.7494 0.1725 146067.7 70 2 21.7615 19.60% 24.1744 27.63%
150.30.c.05 3 121 13.4906 13.5734 0.095 46701.4 65.4 2 15.8102 14.67% 18.7106 27.90%
150.30.c.06 2 127 12.2798 13.1751 0.4578 98147.5 67.6 1.8 16.7385 26.64% 17.3142 29.08%
150.30.c.07 2 131 10.3291 10.561 0.1591 32354.1 68 1 15.3784 32.83% 17.3957 40.62%
150.30.c.08 5 134 16.0884 16.4721 0.2272 87546.3 68.8 2 20.8928 23.00% 22.2966 27.84%
150.30.c.09 5 138 14.1275 14.5081 0.2074 66638.6 69.6 2 18.8961 25.24% 20.1679 29.95%
150.30.c.10 3 127 17.8299 18.005 0.1424 114454.4 66.9 2 22.7758 21.72% 24.6002 27.52%
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underlying distribution due to the high variance of the data caused by the long endurance time, which raises the average saving for
this scenario. In this case, we expect that an experiment with more sample instances per scenario would make the shape of the curve
approach to the expected form. (2) Alternatively, it may be that average savings are actually higher for instances with few customers
such that the saving curve starts high at a low number of customers, then dips, then rises again and peaks before it ultimately starts
declining as more customers are added. As already mentioned in the main text, there is some evidence for the latter conjecture in the
data presented in Fig. 10. We leave to future work to decide which of the two explanations, if any, is true.

From Fig. 11, on the right, in Section 5.2.2, it is seen that, on average, the dispatched drones do not use more than 50% of the total
endurance time. Fig. 21 shows the distribution of the savings with respect to the truck-only case for the different scenarios when
halving the total endurance time. From the figure, it can be seen that the endurance time has a significant impact on the savings. It is
interesting to observe that for instances with few customers the saving drops significantly as the grid size increases while the
instances with many customers are less sensitive to the grid size. Another observation is that the decreased endurance time causes the
variance of the results to decrease significantly compared to the results in Fig. 20.
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