
How to Automate Surveillance Easily
with Deep Learning

This article is a quick tutorial for implementing a surveillance system

using Object Detection based on Deep Learning. It also compares the

performance of different Object Detection models using GPU

multiprocessing for inference, on Pedestrian Detection.

Bharath Raj Follow

Aug 3, 2018 · 14 min read

Images haven’t loaded yet. Please exit printing, wait for images to load, and try to

print again.

https://medium.com/@thatbrguy?source=post_header_lockup
https://medium.com/@thatbrguy

Surveillance is an integral part of security and patrol. For the most part,

the job entails extended periods of looking out for something

undesirable to happen. It is crucial that we do this, but also it is a very

mundane task.

Wouldn’t life be much simpler if there was something that could do the

“watching and waiting” for us? Well, you’re in luck. With the

advancements in technology over the past few years, we could write

some scripts to automate the above tasks — and that too, rather easily.

But, before we dive deeper, let us ask ourselves:

Are machines are good as humans?

Anyone familiar with Deep Learning would know that image classifiers

have surpassed human level accuracy.

So yes, a machine can keep a lookout for objects at the same standard

(or better) when compared to a human. With that being said, using

technology to perform surveillance is much more efficient.

Surveillance is a repetitive and mundane task. This may cause

performance dips for us human beings. By letting technology do

the surveillance, we could focus on taking action if something goes

amiss.

To survey a large strip of land, you need lots of personnel.

Stationary cameras also have a limited range of view. With mobile

surveillance bots (such as micro drones) these problems can be

mitigated.

•

•

Error rate on the ImageNet dataset over time, for Humans, Traditional Computer Vision (CV) and

Deep Learning. (Image source: Link)

https://www.dsiac.org/resources/journals/dsiac/winter-2017-volume-4-number-1/real-time-situ-intelligent-video-analytics

Moreover, the same technology can be used for a variety of applications

which are not limited to security, such as baby monitors or automated

product delivery.

Fair enough. But how do we automate it?
Before we contrive complicated theories, let us think about how

surveillance works normally. We look at a video feed, and if we spot

something abnormal, we take action. So in essence, our technology

should peruse every frame of the video, hoping to spot something

abnormal. Does this process ring a bell?

As you may have guessed, this is the very essence of Object Detection
with Localization. It is slightly different from classification that, we

need to know the exact location of the object. Moreover, we may have

multiple objects in a single image.

To find the exact location, our algorithm should inspect every portion

of the image to find the existence of a class. It is harder than it sounds.

But since 2014, continuous iterative research in Deep Learning has

introduced heavily engineered neural networks that can detect objects

in real time.

There are several Deep Learning architectures, that use different

methods internally, to perform the same task. The most popular

variants are the Faster RCNN, YOLO and the SSD networks.

Each model depends on a base classifier, which greatly affects the final

accuracy and model size. Moreover, the choice of the object detector

can heavily influence computational complexity and final accuracy.

There is always a Speed vs Accuracy vs Size trade-off

when choosing an Object Detection algorithm.

Look at how performance increased over just a span of 2 years!

Speed vs accuracy trade-o�. A higher mAP and a lower GPU Time is optimal.

In this blog post, we will learn how to build a a simple but effective

surveillance system, using Object Detection. Let us first discuss the

constraints we are bound to because of the nature of the surveillance

task.

Constraints for Deep Learning in
Surveillance
Often we would like to keep a look-out over a large stretch of land. This

brings forth a couple of factors that we may need to consider before

automating surveillance.

1. Video Feed

Naturally, to keep a look-out over a large area, we may require multiple

cameras. Moreover, these cameras need to store this data somewhere;

either locally, or to a remote location.

A higher quality video will take a lot more memory than a lower quality

one. Moreover, an RGB input stream is 3x larger than a BW input

stream. Since we can only store a finite amount of the input stream, the

quality is often lowered to maximize storage.

Therefore, a scalable surveillance system should be able to interpret

low quality images. Hence, our Deep Learning algorithm must be

Typical surveillance cameras. (Photo by Scott Webb on Unsplash)

https://unsplash.com/photos/yekGLpc3vro?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/surveillance?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

trained on such low quality images as well.

2. Processing Power

Now that we have resolved the input constraint, we can answer a bigger

question. Where do we process the data obtained from camera sources?

There are two methods of doing this.

Processing on a centralized server:

The video streams from the cameras are processed frame by frame on a

remote server or a cluster. This method is robust, and enables us to reap

the benefits of complex models with high accuracies. The obvious

problem is latency; you need a fast Internet connection for limited

delay. Moreover, if you are not using a commerical API, the server setup

and maintenance costs can be high.

Processing on the edge:

By attaching a small microcontroller, we can perform realtime

inference on the camera itself. There is no transmission delay, and

abnormalities can be reported faster than the previous method.

Moreover, this is an excellent add on for bots that are mobile, so that

they need not be constrained by range of WiFi/Bluetooth available.

(such as microdrones).

•

•

Memory consumption vs Inference GPU Time (milliseconds). Most high performance models

consume a lot of memory. (Source)

https://arxiv.org/pdf/1611.10012.pdf

The disadvantage is that, microcontrollers aren’t as powerful as GPUs,

and hence you may be forced to use models with lower accuracy. This

issue can be circumvented by using onboard GPUs, but that is an

expensive solution. An interesting solution would be to use software

such as TensorRT, which can optimize your program for inference.

Training a Surveillance System
In this section, we will checkout how to identify pedestrians using

Object Detection. We’ll use the TensorFlow Object Detection API to

create our Object Detection module. We will explore in brief on how to

set up the API and train it for our surveillance task. For a more detailed

explanation, you can checkout this blog post.

The entire process can be summarized in
three phases:

Data preparation

Training the model

Inference

1.

2.

3.

FPS capability of various object detectors. (Source)

https://medium.freecodecamp.org/how-to-play-quidditch-using-the-tensorflow-object-detection-api-b0742b99065d
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359

If you feel like seeing the results would motivate you more to try it out,

feel free to scroll down to Phase 3!

Phase 1: Data Preparation

Step 1: Obtain the dataset

Surveillance footage taken in the past is probably the most accurate

dataset you can get. But, it’s often hard to obtain such surveillance

The work�ow involved in training an Object Detection model.

footage for most cases. In that case, we can train our object detector to

generally recognize our targets from normal images.

As discussed before, the images in your camera feed maybe of lower

quality. So you must train your model to work in such conditions. A

very elegant way of doing that is by performing data augmentation,

which is explained in detail here. Essentially, we have to add some

noise to degrade the image quality of the dataset. We could also

experiment with blur and erosion effects.

We’ll use the TownCentre Dataset for our object detection task. We’ll

use the first 3600 frames of the video for training and validation, and

the remaining 900 for testing. You can use the scripts in my GitHub

repo to extract the dataset.

Step 2: Annotate the dataset

You could use a tool such as LabelImg to perform the annotations. This

is a tedious task, but important all the same. The annotations are saved

as XML files.

Luckily, the owners of the TownCentre Dataset have provided

annotations in csv format. I wrote a quick script to convert the

annotations to the required XML format, which you can find in my

GitHub repo.

Step 3: Clone the repository

Sample annotated image from our dataset.

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/2009bbenfold_headpose/project.html#datasets
https://github.com/thatbrguy/Pedestrian-Detector
http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/2009bbenfold_headpose/project.html#datasets
https://github.com/thatbrguy/Pedestrian-Detector

Clone the repository. Run the following commands to install

requirements, compile some Protobuf libraries and set path variables

pip install -r requirements.txt
sudo apt-get install protobuf-compiler
protoc object_detection/protos/*.proto --python_out=.
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

Step 4: Prepare the supporting inputs

We need to assign an ID to our target. We define the ID in file called

label_map.pbtxt as follows

item {
 id: 1
 name: ‘target’
}

Next, you must create a text file with the names of the XML and image

files. For instance, if you have img1.jpg, img2.jpg and img1.xml,

img2.xml in your dataset, you trainval.txt file should look like this:

img1
img2

Separate your dataset into two folders, namely images and

annotations. Place the label_map.pbtxt and trainval.txt inside your

annotations folder. Create a folder named xmls inside the annotations

folder and place all your XMLs inside that. Your directory hierarchy

should look something like this:

-base_directory
|-images
|-annotations
||-xmls
||-label_map.pbtxt
||-trainval.txt

https://github.com/thatbrguy/Pedestrian-Detector

Step 5: Create TF Records

The API accepts inputs in the TFRecords file format. Use the

create_tf_record.py file provided in my repo to convert your dataset

into TFRecords. You should execute the following command in your

base directory:

python create_tf_record.py \
 --data_dir=`pwd` \
 --output_dir=`pwd`

You will find two files, train.record and val.record, after the program

finishes its execution.

Phase 2: Training the model

Step 1: Model Selection

As mentioned before, there is a trade off between speed and accuracy.

Also, building and training an object detector from scratch would be

extremely time consuming. So, the TensorFlow Object Detection API

provides a bunch of pre-trained models, which you can fine tune to

your use case. This process is known as Transfer Learning, and it speeds

up your training process by an enormous amount.

https://github.com/thatbrguy/Pedestrian-Detector
https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-limited-data-f68c0b512cab

Download one of these models, and extract the contents into your base

directory. You will receive the model checkpoints, a frozen inference

graph, and a pipeline.config file.

Step 2: Defining the training job

You have to define the “training job” in the pipeline.config file. Place

the file in the base directory. What really matters is the last few lines of

the file — you only need to set the highlighted values to your respective

file locations.

gradient_clipping_by_norm: 10.0
 fine_tune_checkpoint: "model.ckpt"
 from_detection_checkpoint: true
 num_steps: 200000
}
train_input_reader {
 label_map_path: "annotations/label_map.pbtxt"
 tf_record_input_reader {
 input_path: "train.record"
 }
}
eval_config {
 num_examples: 8000
 max_evals: 10
 use_moving_averages: false
}
eval_input_reader {
 label_map_path: "annotations/label_map.pbtxt"
 shuffle: false
 num_epochs: 1
 num_readers: 1
 tf_record_input_reader {

A bunch of models pre-trained on the MS COCO Dataset

 input_path: "val.record"
 }
}

Step 3: Commence training

Execute the below command to start the training job. It’s recommended

to use a machine with a large enough GPU (provided you installed the

gpu version of tensorflow) to accelerate the training process.

python object_detection/train.py \
--logtostderr \
--pipeline_config_path=pipeline.config \
--train_dir=train

Phase 3: Inference

Step 1: Export the trained model

Before you can use the model, you need to export the trained

checkpoint files to a frozen inference graph. It’s actually easier done

than said — just execute the code below (Replace ‘xxxxx’ with the

checkpoint number):

python object_detection/export_inference_graph.py \
--input_type=image_tensor \
--pipeline_config_path=pipeline.config \
--trained_checkpoint_prefix=train/model.ckpt-xxxxx \
--output_directory=output

You will obtain a file named frozen_inference_graph.pb, along with a

bunch of checkpoint files.

Step 2: Use it on a video stream

We need to extract individual frames from our video source. It can done

by using OpenCV’s VideoCapture method, as follows:

cap = cv2.VideoCapture()
flag = True

while(flag):
 flag, frame = cap.read()
 ## -- Object Detection Code --

The data extraction code used in Phase 1 automatically creates a folder

‘test_images’ with our test set images. We can run our model on the test

set by executing the following:

python object_detection/inference.py \
--input_dir={PATH} \
--output_dir={PATH} \
--label_map={PATH} \
--frozen_graph={PATH} \
--num_output_classes=1 \
--n_jobs=1 \
--delay=0

Experiments
As mentioned earlier, there is trade off between speed and accuracy

while choosing an object detection model. I ran some experiments

which measured the FPS and count accuracy of the people detected

using three different models. Moreover, the experiments were run on

different resource constraints (GPU parallelism constraints) . The

outcome of these experiments can give you some valuable insights

while selecting an object detection model.

Setup

The following models were selected for our experiment. These are

available in the TensorFlow Object Detection API’s Model Zoo.

Faster RCNN with ResNet 50

SSD with MobileNet v1

SSD with InceptionNet v2

•

•

•

All models were trained on Google Colab for 10k steps (or until their

loss saturated). For inference, an AWS p2.8xlarge instance was used.

The count accuracy was measured by comparing the number of people

detected by the model and the ground truth. The inference speed in

Frames per Second (FPS) was tested under the following constraints:

Single GPU

Two GPUs in parallel

Four GPUs in parallel

Eight GPUs in parallel

Results
Here’s an excerpt from the output produced by using FasterRCNN on

our test set. I’ve also attached a video comparing the output produced

by each model near the end of this blog. Feel free to scroll down and

check it out!

Training Time

The plot below shows the time needed to train each model for 10k

steps(in hours). This is excluding the time required for a

hyperparameter search.

•

•

•

•

When your application is very different from the pretrained model you

use for transfer learning, you may need to heavily adjust the

hyperparameters. However, when your application is similar, you

wouldn’t need to do an extensive search. Nonetheless, you may still

require to experiment with training parameters such as the learning

rate and choice of optimizer.

Speed (Frames per Second)

This was the most interesting part of our experiment. As stated earlier,

we measured the FPS performance of our three models on five different

resource constraints. The results are shown below:

SSDs are extremely fast, easily beating Faster RCNN’s speed when we

use a single GPU. However, Faster RCNN quickly catches up with SSD

when we increase the number of GPUs (working in parallel). Needless

to say, SSD with MobileNet is much faster than SSD with InceptionNet

at a low GPU environment.

One notable feature from the above graph is that, FPS slightly

decreases when we increase the number of GPUs for SSD with

MobileNet. There’s actually a simple answer to this apparent paradox.

It turns out that our setup processed the images faster than they were

being supplied by the image read function!

Speed of your video processing system can not be

greater than the speed at which images are fed to

the system.

To prove my hypothesis, I gave the image read function a head-start.

The plot below shows the improvement in FPS for SSD with MobileNet

when a delay was added. The slight reduction in FPS in the earlier

graph is because of the overhead involved due to multiple GPUs

requesting for input.

Needless to say, we observe a sharp increase in FPS if we introduce

delays. The bottom line is, we need to have an optimized image transfer

pipeline to prevent a bottleneck for speed. But since our intended use

case is surveillance, we have an additional bottleneck. The FPS of the

surveillance camera sets the upper limit for the FPS of our system.

Count Accuracy

We define count accuracy as the percentage of people correctly

recognized by our object detection system. I felt like it’s more apt with

respect to surveillance. Here’s how each of our models performed:

Needless to say, Faster RCNN is the most accurate model. Also

surprisingly MobileNet performs better than InceptionNet.

Based on the experiments, it is evident that there is indeed a speed vs

accuracy trade-off. However, we can use a model with high accuracy at

a good FPS rate if we have enough resources. We observe that Faster

RCNN with ResNet-50 offers the best accuracy, and a very good FPS

rating when deployed on 4+ GPUs in parallel.

That was a lot of steps!
Well.. I wouldn’t argue. It is indeed a lot of steps. Moreover, setting a up

cloud instance for this model to work in real time would be

burdensome and expensive.

A better solution would be to use an API service that is already

deployed on servers so that you can just worry about developing your

product. That’s where Nanonets kicks in. They have their API deployed

on quality hardware with GPUs such that you get insane performance

with none of the hassle!

https://nanonets.com/object-detection-api/?utm_source=Medium&utm_campaign=surveillance%20blog/

I converted my existing XML annotations to JSON format and fed it to

the Nanonets API. As a matter of fact, if you dont want to manually

annotate your dataset, you can request them to annotate it for you.

Here’s the reduced workflow when Nanonets takes care of the heavy

lifting.

Earlier, I mentioned how mobile surveillance units such as micro

drones can greatly enhance efficiency. We can create such drones quite

easily using micro controllers such the Raspberry Pi, and we can use

API calls to perform inference.

Reduced work�ow with Nanonets

It’s pretty simple to get started with the Nanonets API for Object

Detection, but for a well explained guide, you can checkout this blog

post.

Results with Nanonets
It took about 2 hours for Nanonets to finish the training process. This is

including the time required for hyperparameter search. In terms of time

taken for training, Nanonets is the clear winner. Nanonets also defeated

FasterRCNN in terms of count accuracy.

FasterRCNN Count Accuracy = 88.77%
Nanonets Count Accuracy = 89.66%

Here is the performance of all four models on our test dataset. It is

evident that both SSD models are a bit unstable and have lower

accuracy. Moreover, even though FasterRCNN and Nanonets have

comparable accuracies, the latter has bounding boxes that are more

stable.

. . .

Is automated surveillance accountable?

https://medium.com/nanonets/how-to-easily-detect-objects-with-deep-learning-on-raspberrypi-225f29635c74

Deep learning is an amazing tool that provides exemplary results with

ease. But, to what extent can we trust our surveillance system to act on

its own? There are a few instances where automation is questionable.

Update: In light of GDPR and the reasons stated below, it is imperative
that we ponder about the legality and ethical issues concerning

automation of surveillance. This blog is for educational purposes only, and

it used a publicly available dataset. It is your responsibility to make sure

that your automated system complies with the law in your region.

1. Dubious Conclusions

We do not know how a deep learning algorithm arrives at a conclusion.

Even if the data feeding process is impeccable, there may be a lot of

spurious hits. For instance, this AI profanity filter used by British cops

kept removing pictures of sand dunes thinking they were obscene

images. Techniques such as guided backpropagation can explain

decisions to some extent, but we still have a long way to go.

2. Adversarial Attacks

Deep Learning systems are fragile. Adversarial attacks are akin to

optical illusions for image classifiers. But the scary part is, a calculated

unnoticeable perturbation can force a deep learning model to mis-

classify. Using the same principle, researchers have been able to

circumvent surveillance systems based on deep learning by using

“adversarial glasses”.

3. False positives

Another problem is, what do we do in the event of false positives. The

severity of the issue depends on the application itself. For instance, a

false positive on a border patrol system may be more significant than a

garden monitoring system. There should be some amount of human

intervention to avoid mishaps.

4. Similar faces

Sadly, your look is not as unique as your fingerprint. It is possible for

two people (or more) to look very similar. Identical twins are one of the

prime examples. It was reported that, Apple Face ID failed to

distinguish two unrelated Chinese coworkers. This could make

surveillance and identifying people harder.

https://gizmodo.com/british-cops-want-to-use-ai-to-spot-porn-but-it-keeps-m-1821384511?utm_campaign=socialflow_gizmodo_twitter&utm_source=gizmodo_twitter&utm_medium=socialflow
http://www.cs.toronto.edu/~guerzhoy/321/lec/W07/HowConvNetsSee.pdf
https://blog.openai.com/adversarial-example-research/
https://www.digitaltrends.com/cool-tech/facial-recognition-glasses-security/
https://www.mirror.co.uk/tech/apple-accused-racism-after-face-11735152

5. Lack of diversity in datasets

Deep Learning algorithms are only as good as the data your provide it.

Most popular datasets of human faces, only have samples of white

people. While it may seem obvious to a child that humans can exist in

various colors, Deep Learning algorithms are sort of dumb. In fact,

Google got into trouble because it classified a black person incorrectly

as a gorilla.

. . .

About Nanonets: Nanonets is building APIs to simplify deep learning for

developers. Visit us at https://www.nanonets.com for more)

https://www.wired.com/story/when-it-comes-to-gorillas-google-photos-remains-blind/
https://nanonets.com/object-detection-api/?utm_source=Medium&utm_campaign=surveillance%20blog/

